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a b s t r a c t

A multilevel network is defined as the junction of two interaction networks, one level
representing the interactions between individuals and the other the interactions be-
tween organizations. The levels are linked by an affiliation relationship, each individual
belonging to a unique organization. A new Stochastic Block Model is proposed as a
unified probabilistic framework tailored for multilevel networks. This model contains
latent blocks accounting for heterogeneity in the patterns of connection within each level
and introducing dependencies between the levels. The sought connection patterns are
not specified a priori which makes this approach flexible. Variational methods are used
for the model inference and an Integrated Classified Likelihood criterion is developed
for choosing the number of blocks and also for deciding whether the two levels are
dependent or not. A comprehensive simulation study exhibits the benefit of considering
this approach, illustrates the robustness of the clustering and highlights the reliability of
the criterion used for model selection. This approach is applied on a sociological dataset
collected during a television program trade fair, the inter-organizational level being the
economic network between companies and the inter-individual level being the informal
network between their representatives. It brings a synthetic representation of the two
networks unraveling their intertwined structure and confirms the coopetition at stake.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The statistical analysis of network data has been a hot topic for the last decade. The last few years witnessed a growing
nterest for multilayer networks (see Kivelä et al., 2014; Bianconi, 2018; Giordano et al., 2019). A particular case of
ultilayer networks is multilevel networks where each level is a layer and an affiliation relationship represents the inter-

ayer. Multilevel networks are used across many fields such as sociology (Lazega and Snijders, 2015) or environmental
cience (Hileman and Lubell, 2018). In particular they arise in the sociology of organizations and collective action when
illing to study jointly the social network of individuals and the interaction network of organizations the individuals
elong to. Indeed, the individuals not only interact with each others but are also members of interacting organizations.
his approach is quite generic in the social sciences and all the phenomena of coopetition and the maintenance of social
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inequalities can fall within the scope of this approach (Lazega and Jourda, 2016). It is also gaining attention as a way to
articulate social network analysis and the life course studies (Vacchiano et al., 2020). Following Lazega and Snijders (2015),
one might think that these two types of interactions (between individuals and between organizations) are interdependent,
the individuals shaping their organizations and the organizations having an influence on the individuals. We aim to
propose a statistical model for multilevel networks in order to understand how the two levels are intertwined and how
one level impacts the other.

In what follows, a multilevel network is defined as the collection of an inter-individual network, an inter-organizational
etwork and the affiliation of the individuals to the organizations. Besides, we assume that the individuals belong to
unique organization. Such a dataset is studied by Lazega et al. (2008), some researchers in cancerology being the

ndividuals and their laboratories the organizations. Brailly et al. (2016) deal with another dataset concerned with the
conomic network of audiovisual firms and the informal network of their sales representatives during a trade fair. This
atter dataset will be analyzed in this paper.

In the last years, the Stochastic Block Model (SBM developed by Holland et al., 1983; Snijders and Nowicki, 1997) has
ecome a popular tool to model the heterogeneity of connection in a network, assuming that the actors at stake are divided
nto blocks (clusters) and that the members of a same block share a similar profile of connectivity. Compared to other
raph clustering methods such as modularity maximization, hierarchical clustering or spectral clustering (see Kolaczyk,
009, and references therein), the SBM is a generative model, it shares with the generalized blockmodeling (Doreian et al.,
005) that they can both fit to a wide range of topologies since they gather into blocks the nodes that are structurally
quivalent. However, contrary to the generalized blockmodeling which seeks a pre-specified structure in the network
ith given ideal blocks, the SBM is agnostic and is aimed to unravel any kind of block structure which may shape the
ata. This includes but is not restricted to the detection of assortative communities where the probability of connection
ithin a block is higher than the probability of connection between the blocks. Moreover, the probabilistic generative
odel allows the modeler to have a unified framework for model selection and natural extensions such as dealing with
on binary dyads and link prediction. The SBMs have been extended to particular types of multilayer networks: Barbillon
t al. (2017) propose an SBM for multiplex networks and Matias and Miele (2017) an SBM for time-evolving networks. In
his paper, we propose an SBM suited to multilevel networks (MLVSBM).

ur contribution. In a few words, we model the heterogeneity in the inter-individual and inter-organizational connections
y introducing blocks of individuals and blocks of organizations, the blocks containing homogeneous groups of actors
individuals or organizations) with respect to their connectivity. The two levels are assumed to be interdependent through
heir latent blocks. More specifically, the latent blocks of the inter-individual level depend on the latent blocks of the inter-
rganizational level and the affiliation. This bi-clustering approach allows us to determine how groups of organizations
nfluence the connectivity patterns of their individuals. Note that the hierarchical model does not assume a causal effect
f the blocks of organizations on the blocks of individuals but an interdependence between the two sets of blocks.
Due to the latent variables, the estimation of the parameters is a complex task. We resort to a variational version

f the Expectation–Maximization (EM) algorithm. For the SBM, the variational approach (Jordan et al., 1999; Blei et al.,
017) has proven its efficiency for deriving maximum likelihood estimates (Daudin et al., 2008; Mariadassou et al., 2010;
arbillon et al., 2017) and for Bayesian inference (Latouche et al., 2012; Côme and Latouche, 2015). In the latent block
odel which is suited for bipartite network, the variational estimates have also been successfully applied (Govaert and
adif, 2008). In this paper, we obtain approximate maximum likelihood estimates by an ad-hoc version of the variational
M algorithm.
Another important task is the choice of the number of blocks. We propose an adapted version of the Integrated

omplete Likelihood (ICL) criterion. First developed by Biernacki et al. (2000) for mixture models as an alternative to
he Bayesian Information Criterion (BIC), it was then adapted by Daudin et al. (2008) to the SBM. The ICL has since
llustrated its efficiency and relevance for various SBMs and their extensions such as multiplex network (Barbillon et al.,
017), dynamic SBM (Matias and Miele, 2017) or degree corrected SBM (Yan, 2016). A further reference for dynamic SBMs
s Bartolucci et al. (2018). Besides, a critical issue in sociology is to verify the multilevel interdependence hypothesis in
multilevel network, i.e. if the two levels (inter-individual and inter-organizational) should be analyzed jointly or if a
eparate analysis is sufficient. We thus propose a criterion to decide whether the two levels are independent or not.

elated works. The term multilevel network arises in the statistical literature for a wide variety of complex networks. For
nstance, Zijlstra et al. (2006) adapt the p2-model to handle multiple observations of a network, Sweet et al. (2014) extend
he Mixed Membership Stochastic Block Model (Airoldi et al., 2008) to the hierarchical network model framework (Sweet
t al., 2013) for the same type of data. Snijders (2017) discusses the use of the stochastic actor-oriented model (Snijders,
001) for temporal and multivariate networks.
When dealing with the multilevel networks we defined before, Wang et al. (2013) adopt an exponential random graph

odel (ERGM) strategy that is used in applications across many fields such as environmental science (Hileman and Lubell,
018) or sociology (Lazega and Snijders, 2015, chapters 10–11, 13–14). When focusing on a clustering approach, Žiberna
2014) develops three general approaches for blockmodeling multilevel networks. First, the separate analysis consists in
lustering the levels separately or using the clustering of one level on the other. Second, the conversion approach converts
he level of the organizations into a new kind of interaction between individuals, the interactions are then aggregated into

single layer network; this is close to the approach taken by Barbillon et al. (2017) who transform the inter-organizational

2
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network into an inter-individual network thus adopting a multiplex network approach (the individuals interconnect
directly or through the organizations they belong to). The third approach is called the true multilevel approach and is
the closest to the one we propose on this paper.

Žiberna (2014) and the extensions in Žiberna (2019, 2020) to a more general set of multilayer networks (called linked
etworks) use a generalized blockmodeling framework (Doreian et al., 2005). Contrary to this deterministic approach, we
esort to a probabilistic generative model for all the reasons stated above. The MLVSBM additionally provides us with a
atural criterion for detecting the interdependence between the two levels. Furthermore, we explicitly take into account
he constraint of having a unique affiliation per individual inherent to these multilevel datasets and do not consider the
ffiliation as a bipartite network.
Also, note that the multiplex SBM approach applied to a multilevel network suggested by Barbillon et al. (2017) is

nly applicable when the numbers of individuals and organizations are close. Indeed it requires to duplicate the data of
he inter-organizational level to fit the size of the inter-individual level. Furthermore, it only provides a clustering of the
ndividuals and not two clusterings, one of the individuals and one of the organizations. In contrast, our MLVSBM does
ot need to transform the data into a multiplex network and is able to obtain a clustering of the nodes within each level.
If we release the constraint of the unique affiliation, then the inter-level can be modeled by a latent block model and

e obtain a particular case of the multipartite SBM of Bar-Hen et al. (2020). However, the interactions between individuals
nd organizations are considered at the same level as the affiliations, and the clustering might be strongly influenced by
he number of individuals in each organization.

Finally, our work is also different from the SBM with edges covariates (Mariadassou et al., 2010) with the individuals
s nodes and the inter-organizational network as edges covariates. Indeed, in that case, the clustering obtained for the
ndividuals is the remaining structure of the inter-individual level once the effect of the covariates has been taken into
ccount. In addition, this model does not provide a clustering of the organizations.

utline of the paper. The paper is organized as follows. The SBM adapted to multilevel networks (MLVSBM) is defined in
ection 2. We also give conditions guaranteeing the independence between levels and the identifiability of the parameters.
he inference strategy and the model selection criterion are provided in Section 3. The proof of the independence between
evels, of the identifiability and the details on the variational EM and the ICL criterion are postponed to the Appendix
ections. In Section 4, we present an extensive simulation study illustrating the relevance of our inference method, model
election criterion and procedure. Section 5 is dedicated to the analysis of a sociological dataset by our MLVSBM. Finally
e discuss our contribution and future works in Section 6.

. A multilevel stochastic block model (MLVSBM)

ataset. Let us consider nI individuals involved in nO organizations. We encode the networks into adjacency matrices as
ollows. Let X I be the binary nI×nI matrix representing the inter-individual network. X I is such that : ∀(i, i′) ∈ {1, . . . , nI}

2:

X I
ii′ =

{
1 if there is an interaction from individual i to individual i′,
0 otherwise.

(1)

O is the binary nO × nO matrix representing the inter-organizational network, ∀(j, j′) ∈ {1, . . . , nO}
2:

XO
jj′ =

{
1 if there is an interaction from organization j to organization j′,
0 otherwise.

(2)

emark. In general, no self-loop is considered in the network, thus the interactions are defined for i ̸= i′ and j ̸= j′.
oreover, if the interactions are undirected then

X I
ii′ = X I

i′ i ∀(i, i′) or/and XO
jj′ = XO

j′j ∀(j, j′).

n what follows, we present the methodology for undirected networks. However, all the results can be adapted to directed
etworks without any difficulty.

Let A be the affiliation matrix. A is a nI × nO matrix such that:

Aij =

{
1 if individual i belongs to organization j,
0 otherwise.

is such that ∀i = 1, . . . , nI ,
∑nO

j=1 Aij = 1 since we assume that any individual belongs to a unique organization. A
synthetic view of a generic dataset is provided in Fig. 1.

We propose a joint modeling of the inter-individual and inter-organizational networks based on an extension of the
SBM. More precisely, assume that the nO organizations are divided into QO blocks and that the nI individuals are divided
into QI blocks. Let ZO

= (ZO
1 , . . . , ZO

nO ) and Z I
= (Z I

1, . . . , Z
I
nI ) be such that ZO

j = l if organization j belongs to block l
l ∈ {1, . . . ,Q }) and Z I

= k if individual i belongs to block k (k ∈ {1, . . . ,Q }).
O i I

3
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Fig. 1. Matrix representation of a multilevel network.

Given these clusterings, we assume that the interactions between organizations and the interactions between individ-
uals are independent and distributed as follows:

P(XO
jj′ = 1|ZO

j , ZO
j′ ) = αO

ZOj ZO
j′
,

P(X I
ii′ = 1|Z I

i , Z
I
i′ ) = αI

Z Ii Z
I
i′
.

(3)

s a consequence, the blocks gather nodes (blocks of individuals on the one hand and blocks of organizations on the other
and) sharing the same profiles of connectivity.
In order to take into account the fact that organizations may shape the individual behaviors, we assume that the

emberships of the individuals (Z I ) depend on the blocks of the organizations (ZO) they are affiliated to. More precisely,
e set:

P(Z I
i = k|ZO

j , Aij = 1) = γkZOj
∀i ∈ {1, . . . , nI} ∀k ∈ {1, . . . ,QI}, (4)

where γ is a QI × QO matrix such that
∑QI

k=1 γkl = 1 ∀l ∈ {1, . . . ,QO}. The (ZO
j ) are assumed to be independent random

variables distributed as

P(ZO
j = l) = πO

l , ∀j ∈ {1, . . . , nO} ∀l ∈ {1, . . . ,QO}, (5)

ith
∑QO

l=1 πO
l = 1.

Eqs. (4) and (5) state that the clustering of an individual is not completely driven by his/her behavior but is also shaped
y the clustering of the organization he/she belongs to. In particular, if QO = QI and γ is equal to the identity matrix (up

to a reordering of the rows) then, the clustering of the individuals is completely determined by the clustering of the
organizations. At the opposite of the spectrum, if all the columns of γ are equal, then the clustering of the individuals is
independent of the clustering of the organizations. This point will be developed hereafter.

Eqs. (3), (4) and (5) define a joint modeling of X I and XO. In what follows, we set θ = {πO, γ , αO, αI
} the vector of

the unknown parameters, X = {X I , XO
} are the observed variables and Z = {Z I , ZO

} the latent variables. The DAG of the
LVSBM is plotted in Fig. 2. An illustration of the MLVSBM for a small multilevel network is presented in Fig. 3.

ikelihood. From Eqs. (3), (4) and (5), we derive the complete log-likelihood for an undirected MLVSBM:

log ℓθ

(
X I , XO, Z|A

)
= log ℓπO (ZO) + log ℓγ (Z I

|ZO, A) + log ℓαI (X I
|Z I ) + log ℓαO (XO

|ZO)

=

∑
j,l

1ZOj =l logπO
l +

∑
i,k

1Z Ii =k

∑
j,l

Aij1ZOj =l log γkl (6)

+
1
2

∑
i′ ̸=i

∑
k,k′

1Z Ii =k1Z I
i′
=k′ logφ(X I

ii′ , α
I
kk′ ) +

1
2

∑
j′ ̸=j

∑
l,l′

1ZOj =l1ZO
j′

=l′ logφ(XO
jj′ , α

O
ll′ ),

where φ(x, a) = ax(1 − a)1−x.
4
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Fig. 2. DAG of the stochastic block model for multilevel network (MLVSBM).

Fig. 3. MLVSBM with inter-organizational level on the top and inter-individual level on the bottom. The various shades of blue depict the clustering
of the individuals and the various shades of red depict the clustering of the organizations. The parameters α over the plain links between nodes
are the probabilities of connections given the nodes colors (clustering/blocks). The outer circles around the nodes of the individuals represent the
blocks of the organizations they are affiliated to. The dashed links stand for the affiliations. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Remark. Note that the factors 1/2 in Eq. (6) derive from the fact that we consider undirected networks. If one or both
of the networks are directed, then the corresponding 1/2 disappears.

The log-likelihood of the observations ℓθ (X|A) is obtained by integrating out the latent variables Z in Eq. (6). As soon
as nO, nI , QO, or QI increases, this summation over all the possible clusterings Z I and ZO cannot be performed within
reasonable computational time. As a consequence, we will resort to the variational EM algorithm to maximize this

ikelihood (see Section 3).

ndependence. We now derive conditions for the structural independence between levels in terms of parameters equality.

roposition 1. In the MLVSBM, the two following properties are equivalent:

1. Z I is independent on ZO,
2. γkl = γkl′ ∀l, l′ ∈ {1, . . . ,QO},

and imply that:

3. X I and XO are independent.

This proposition is proved in Appendix A. Proposition 1 can be interpreted as follows: in the case where the clustering
of the individuals does not depend on the clustering of the organizations, all column vectors of γ are identical. Hence,
under this restriction on γ , the model for multilevel network can be rewritten as the product of two independent SBMs,
one for each level. Conversely, in the case of a strong dependence between the levels, each column of γ will have one
5
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coefficient close to one, the others being close to 0. Therefore, the individuals affiliated to organizations belonging to the
same block of organizations will be affiliated to one block of individuals. Even if the γ ’s imply a dependent relationship
etween the two levels, the connections of the corresponding blocks at the two levels may have different connectivity
atterns since there is no constraint on the corresponding connection parameters αO and αI .

dentifiability. The identifiability conditions for the MLVSBM are given in the following proposition.

roposition 2. The MLVSBM is identifiable up to label switching under the following assumptions:

A1. All coefficients of αI
· γ · πO are distinct and all coefficients of αO

· πO are distinct.
A2. nI ≥ 2QI and nO ≥ max(2QO,QO + QI − 1).
A3. At least 2QI organizations contain one individual or more.

The set of parameters that do not verify assumption A1 has null Lebesgue measure.
Assumption A2 is very weak in practice. Assumption A3, on the affiliation, means that at least some organizations

ust not be empty and enough individuals belong to different organizations. The proof of this proposition is provided in
ppendix B and results from an extension of the proof are given in Celisse et al. (2012).

. Statistical inference

We now present a maximum likelihood procedure and a criterion for model selection.

.1. Variational method for maximum likelihood estimation

As said before, ℓθ (X|A) is obtained by integrating out the latent variables Z in the complete data likelihood (6). However,
his calculus becomes not computationally tractable as the numbers of nodes and blocks increase.

The Expectation–Maximization algorithm (EM) (Dempster et al., 1977) is a popular solution to maximize the likelihood
f models with latent variables. However it requires the computation of Pθ (Z|X, A) which is also not tractable in our case.
he variational version of the EM algorithm is a powerful solution for such cases. It was first used for the SBM by Daudin
t al. (2008).
In a few words, the variational EM algorithm maximizes the so-called variational bound i.e. a lower bound of the

og-likelihood denoted Iθ (R(Z|A)) and defined as follows:

Iθ (R(Z|A)) := ER [ℓθ (Z,X|A)] + H (R(Z|A)) (7)
= ℓθ (X|A) − KL (R(Z|A) ∥ Pθ (Z|X, A)) ≤ ℓθ (X|A),

here KL is the Kullback–Leibler divergence, H is the Shannon entropy: H(P) = EP [− log(P)] and R(Z|A) is an
pproximation of the true distribution Pθ (Z|X, A). In our context, and following Daudin et al. (2008), we propose to choose
(Z|A) in a family of factorized distributions, resulting in a mean field approximation R(Z|A) defined as:

R(Z|A) =

nI∏
i=1

QI∏
k=1

(τ I
ik)

1
ZIi =k

nO∏
j=1

QO∏
l=1

(τO
jl )

1
ZOj =l

, (8)

here τ I
ik = PR(Z I

i = k) and τO
jl = PR(ZO

j = l).
Inputting Eqs. (6) and (8) into Eq. (7), the variational bound for the MLVSBM can be written as follows:

Iθ (R(Z|A)) =

∑
j,l

τO
jl logπO

l +

∑
i,k

τ I
ik

∑
j,l

Aijτ
O
jl log γkl

+
1
2

∑
i′ ̸=i

∑
k,k′

τ I
ikτ

I
i′k′ logφ

(
X I
ii′ , α

I
kk′
)
+

1
2

∑
j′ ̸=j

∑
l,l′

τO
jl τ

O
j′ l′ logφ

(
XO
jj′α

O
ll′

)
−

∑
i,k

τ I
ik log τ I

ik −

∑
j,l

τO
jl log τO

jl .

The variational EM algorithm consists in iterating two steps. Step VE maximizes the variational bound with respect to
the parameters of the approximate distribution defined in Eq. (8). This is equivalent to minimizing the Kullback–Leibler
divergence term. Step M maximizes the variational bound with respect to the model parameters θ . The procedure is given
in Algorithm 1 and details of the calculus and algorithm are developed in Appendix C. Algorithm 1 can be slightly modified
to handle missing data (dyads which are not observed in any of the two levels) by summing up on observed dyads only.
An interesting feature of the MLVSBM is to make use of one level to help the prediction of missing dyads of the other
level.
6



S.-C. Chabert-Liddell, P. Barbillon, S. Donnet et al. Computational Statistics and Data Analysis 158 (2021) 107179

A
i

u

w
i
b

Remark. Although the family of the variational distributions does not consider the affiliation matrix A, the minimization
of the Kullback–Leibler divergence between the variational distribution and Pθ (Z|X, A) induces an indirect dependence on
in the variational distribution. One may consider more complex distributions but the simulation studies show that the

nference algorithm is able to retrieve properly the dependence between the Z Is and the ZOs in this family of distributions.

Algorithm 1: Variational EM algorithm
Data: {X, Z, A}, a multilevel network with an initial clustering of size (QI ,QO).

Procedure:
• Set {τ I , τO

} from the initial clustering.

while Iθ (R(Z|A)) is increasing do
• M step compute

θ (t+1)
= argmax

θ
Iθ (R(t+1)(Z I , ZO

|A)),

by updating the model parameters as follows:

π̂O
l =

1
nO

∑
j

τ̂O
jl α̂O

ll′ =

∑
j′ ̸=j τ̂

O
jl X

O
jj′ τ̂

O
j′ l′∑

j′ ̸=j τ̂
I
jlτ̂

I
j′ l′

γ̂kl =

∑
i,j τ̂

I
ikAijτ̂

O
jl∑

i,j Aijτ̂
O
jl

α̂I
kk′ =

∑
i′ ̸=i τ̂

I
ikX

I
ii′ τ̂

I
i′k′∑

i′ ̸=i τ̂
I
ikτ̂

I
i′k′

.

• VE step compute

{τ I , τO
}
(t+1)

= argmax
τ I ,τO

Iθ (t) (R(Z I , ZO
|A))

by updating the variational parameters with the following fixed points relationships:

τ̂O
jl ∝πO

l

∏
i,k

γ
Ail τ̂ Iik
kl

∏
j′ ̸=j

∏
l′

φ(XO
jj′ , α

O
ll′ )

τ̂O
j′ l′

τ̂ I
ik ∝

∏
j,l

γ
Ail τ̂Ojl
kl

∏
i′ ̸=i

∏
k′

φ(X I
ii′ , α

I
kk′ )

τ̂ I
i′k′ .

return Iθ (R(Z|A)), θ̂ and {τ̂ I , τ̂O}

3.2. Model selection

3.2.1. Selection of the number of blocks
Following Biernacki et al. (2000) and Daudin et al. (2008), we propose a model selection criterion to choose the

nknown number of blocks QI and QO. The ICL criterion is an integrated version of BIC applied to the complete likelihood.
In other words, it is an asymptotic approximation of the complete likelihood integrated over its parameters and latent
variables, it values both goodness of fit and classification sharpness (Mariadassou et al., 2010).

Our criterion is equal to:

ICLMLVSBM(QI ,QO) = log ℓ̂θ (X
I , XO, Ẑ I , ẐO|A,QI ,QO) − penMLVSBM(QI ,QO), (9)

where

penMLVSBM(QI ,QO) =
1
2
QI (QI + 1)

2
log

nI (nI − 1)
2

+
QO(QI − 1)

2
log nI+

1
2
QO(QO + 1)

2
log

nO(nO − 1)
2

+
QO − 1

2
log nO, (10)

here ẐO and Ẑ I are the imputed latent variables using the maximum a posteriori (MAP) of Pθ̂ (Z|X, A;QI ,QO). The calculus
s provided in Appendix D. As for the variational inference, Pθ̂ (Z|X, A;QI ,QO) is unknown and, in practice, we replace it
y its mean-field approximation Rθ̂ (Z|A;QI ,QO).
7
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Remark. Once again, note that the penalty (10) is adapted to undirected networks. For instance, the term QI (QI+1)
2

og nI (nI−1)
2 would become Q 2

I log nI (nI − 1) if X I were not symmetric.

emark. We recall that the penalty of the ICL for a (unilevel) SBM is given by

penSBM(Q ) =
1
2
Q (Q + 1)

2
log

n(n − 1)
2

+
Q − 1

2
log n. (11)

The penalty term in Eq. (10) for the inter-organizational level is the same as the one given in Eq. (11). For the inter-
ndividual network, the factor in front of log nI is QO(QI −1) instead of QI −1 for the SBM as in Eq. (11), that is the penalty
erm which corresponds to the degree of freedom of γ .

.2.2. Determining the independence between levels
The ICL criterion can also be used to assess whether the two levels of interactions are independent or not. If γ is forced

o have all its columns identical, then the penalty term on γ becomes 1
2 (QI − 1) log nI and, as a consequence:

ICLInd(QI ,QO) = ICLISBM(QI ) + ICLOSBM(QO). (12)

he ICL criterion favors independence if

max
{QI ,QO}

ICLMLVSBM(QI ,QO) ≤ max
QI

ICLISBM(QI ) + max
QO

ICLOSBM(QO).

f this is the case, then the gain in terms of likelihood does not compensate the gain 1
2 (QO−1)(QI −1) log nI in the penalty.

This criterion focuses on the dependence between levels given by the inter-level.

Remark. If QI = 1 or QO = 1, the MLVSBM is the product of two independents SBM, as such ICLInd(QI ,QO) =

CLMLVSBM(QI ,QO).

.2.3. Procedure for model selection
We now provide a procedure for model selection which seeks for the optimal number of blocks at a reasonable cost.

s a by-product, it states whether the two levels are independent or not.
The practical choice of the model and the estimation of its parameters are computationally intensive tasks. Indeed,

e should compare all the possible models – one model corresponding to a given (QI ,QO) – through the ICL criterion.
urthermore, for each model, the variational EM algorithm should be initialized at a large number of initialization points
due to its sensitivity to the starting point), resulting in an unreasonable computational cost. Instead, we propose to
dopt a stepwise strategy, resulting in a faster exploration of the model space, combined with efficient initializations of
he variational EM algorithm. The procedure we suggest is given in Algorithm 2.

Algorithm 2: Model selection algorithm

Data: {X I , XO, A}, a multilevel network.

rocedure:
Infer independent SBMs on X I and XO for a respective range of QI and QO. Deduce

Q̂I
Ind

= argmax
QI

ICLISBM(QI ) and Q̂O
Ind

= argmax
QO

ICLOSBM(QO).

ompute ICLInd = ICLISBM(Q̂I
Ind

) + ICLOSBM(Q̂O
Ind

).

Start at QI = Q̂I
Ind

and QO = Q̂O
Ind

.

hile ICL is increasing do
- Fit an MLVSBM on every model of size (QI ± 1,QO ± 1) initialized by merging 2 blocks or splitting a block with
hierarchical clustering.
- Among all estimated models, keep the one with the highest ICL.

return (Q̂I , Q̂O) = argmax ICL(QI ,QO), θ̂(Q̂I ,Q̂O) and Ẑ.

Each step of the algorithm requires O(max{QI ,QO}
2) variational EM algorithms which converge in a few iterations as

result of the local initialization. Inferring an independent SBM on each level beforehand is a fast way to start with good
nitialization and allows us to state on the independence of the model at the same time as we just need to compare the
um of the ICLInd and ICLMLVSBM(Q̂I , Q̂O).

Package. All the codes are available as an R package at https://chabert-liddell.github.io/MLVSBM/. It features the simu-
lation and inference of multilevel networks with symmetric and/or asymmetric adjacency matrices, model and indepen-
dence selection. It also handles missing at random data (Rubin, 1976) on the adjacency matrices of one or both levels
and link prediction.
8
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4. Illustration on simulated data

In this section, we study the performances of the inference procedure for the MLVSBM including the ability to recover
locks, the selection of the numbers of blocks and the independence detection.

emark. In order to evaluate the ability to recover blocks, we resort to the Adjusted Rand Index (ARI) (Hubert and Arabie,
985) which is a comparison index between two clusterings with a correction for chance. This index is close to 0 when
he two clusterings are independent and is 1 when the clusterings are identical (up to label switching).

emark. In our results, we focus on the ability to recover blocks rather than on the quality of the model parameter
stimates since it is the hardest task. Indeed, once the blocks are recovered (ARI=1), the estimation of the model
arameters boils down to the computation of the proportions of observed links between blocks which is a consistent
stimator in a Bernoulli i.i.d. model.

.1. Experimental design

In what follows, we set QO = QI = 3. The networks are of sizes: nO = 60 and nI = 180.
Let d be a density parameter: the lower d, the sparser the network and the harder the inference. ϵ (≥ 1) is a parameter

uning the strength of the communities; when ϵ is high, the communities are easily separable. In the simulation study,
e focus on the three following standard topologies.

• Assortative communities. The probability of connection within communities is higher than the probability of connec-

tion between communities: αI
= d ∗

[
ϵ 1 1
1 ϵ 1
1 1 ϵ

]
.

• Disassortative communities. The probability of connection within communities is lower than the probability of

connection between communities: αI
= d ∗

[1 ϵ ϵ

ϵ 1 ϵ

ϵ ϵ 1

]
.

• Core–periphery. A core block is highly connected to the whole network while the probability of connection in the

periphery is low: αI
= d ∗

[
ϵ ϵ 1
ϵ 1 1
1 1 1

]
.

We fix the topology of the inter-organizational level XO to be an assortative communities with d = 0.1, ϵ = 5 and of
ommunities of equal size on average. We expect this topology to be easy to infer and to obtain a perfect recovery of the
lustering with high probability.
For the inter-individual level, d is set to 0.01, 0.05 or 0.1 while ϵ ranges from 1 to 10 by stepsize of 0.5. ϵ = 1

orresponds to an Erdős–Rényi graph and the communities should be indistinguishable.
The affiliation matrix A is generated from a power-law distribution in order to get different sizes of organizations.

ther distributions were tried but the results (not reported here) show that their impact on the inference is weak.
Finally, δ is a parameter for the strength of the dependence between levels, ranging from 0 to 1. More precisely, we

et:

γ =

⎡⎢⎣ δ 1
2 (1 − δ) 1

2 (1 − δ)
1
2 (1 − δ) δ 1

2 (1 − δ)
1
2 (1 − δ) 1

2 (1 − δ) δ

⎤⎥⎦
where γ has been defined in Eq. (4). δ = 1/QI corresponds to the case of independence between levels. The further δ is
from 1/QI , the stronger the dependence between levels. δ = 1 implies a deterministic link between the clustering of the
two levels, i.e. the block of an individual is fully determined by the block of his/her organization. With this experimental
design we aim to exhibit how the inference is improved by applying the MLVSBM rather than the SBM when the two
levels are intertwined.

4.2. Simulation results

During the inference procedure, the number of blocks is unknown for both levels. We run the model selection for
Q̂I ∈ {1, . . . , 10} and Q̂O ∈ {1, . . . , 10}.

First, we fix δ = 0.8 and make ϵ vary. Each situation is simulated 50 times. We test the ability of our model to
ecover the true clustering of Z I from (X I , XO). We compare our performances to the ones obtained by applying a standard
unilevel) SBM on X I . Because (QI ,QO) are assumed to be unknown, two types of error may occur: one for not selecting
he right Q and one for assigning nodes to the wrong blocks. The results are displayed in Fig. 4.
I

9
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Fig. 4. Clustering and model selection for 3 different topologies on the inter-individual level, varying ϵ and density d. Each situation is simulated 50
times. A: ARI for the inter-individual level, comparing the model used for inference. B: Stacked frequency barplot of the selected number of blocks
for the inter-individual level in the MLVSBM (in blue). C: Stacked frequency barplot of the selected number of blocks for the inter-individual level
chosen in the SBM (in red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

In Fig. 4 A, we plot – for 3 values of density d and the 3 topologies (assortative, core–periphery and disassortative) – the
ARI when using MLVSBM (plain line) and SBM (dashed line) as ε varies. We observe that, for any topology, the MLVSBM
starts to recover perfectly the clustering for a lower value of ϵ than the SBM because in the MLVSBM, the inter-individual
level benefits from the information held in the inter-organizational level through the dependence of their blocks. The
difficulty of the inference increases as ϵ decreases: as can be seen in Fig. 4 A, MLVSBM still performs well (ARI > 0) for
small values of ϵ while the SBM is unable to recover the clustering.

In Fig. 4 B and C, we plot the number of blocks chosen by the MLVSBM (B) and the SBM (C) for 3 values of density
(rows) and 3 topologies (columns) (the true value being QI = 3). We observe that using the MLVSBM allows to recover
more precisely QI than using the SBM. Q̂I varies from 1, when no structure is detected to 3 which is the true number of
blocks. The procedure never selects more blocks than expected, which is coherent with prior knowledge that the ICL for
the SBM tends to select models of smaller size (Hayashi et al., 2016; Brault, 2014).

On the three topologies with ϵ = 3, depending on the density d, MLVSBM and SBM supply Z I either a perfect recovery
of the clustering or a random clustering or something in between. In order to understand better this phenomenon, we fix
ϵ to 3 and make δ – which quantifies the dependency between the two levels – vary. The results are reported in Fig. 5
for 50 simulations of each situation.

When δ = 1/3 (yellow vertical line in Fig. 5 A), the two levels are independent and the results in terms of clustering
are the same for the MLVSBM and the SBM on X I (see ARI in Fig. 5 A). As soon as δ departs from this value, the MLVSBM is
able to recover some of the structure of the inter-individual level thanks to the inter-organizational level and this ability
is observed even for very low density when δ gets closer to 1 (see Fig. 5 A and B).

Fig. 5.C depicts the performances of the ICL criterion to state on the independence between the two levels. For d = 0.01,
X I is very sparse, Q̂I = 1 (no structure is detected on the inter-individual level) leading to ICLind = ICLMLVSBM and
preventing us from detecting any dependency. For higher densities, we see as expected, that if δ ≈ 1/3, the independent
SBM will be preferred. On the contrary the further δ departs from 1/3 the more the MLVSBM will be selected, even-though
the MLVSBM and the independent SBM may provide the same clusterings. This phenomenon occurs faster for higher
density d. In our simulation, the MLVSBM is never selected when δ = 1/3. This is a consequence of the conservative
nature of ICL, requiring strong evidence from the likelihood to select a more complex model.
10
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Fig. 5. Clustering and model selection for 3 different topologies on the inter-individual level, as function of δ and density d. Each situation is simulated
0 times. The yellow vertical lines represent a δ = 1/3 (i.e. a γ with uniform coefficients, resulting in independence between the two levels). A:
RI for the inter-individual level, comparing the model used for inference. B: Stacked frequency barplot of the selected number of blocks for the
nter-individual level in the MLVSBM. C: Stacked frequency barplot of the selected model with respect to inter-level dependence. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Average running time for the inference of the MLVSBM for different network sizes and
different numbers of blocks.
Network Size Running time (mean ± sd) in seconds

nI nO QI = QO = 2 QI = QO = 4 QI = QO = 8

150 50 9.87 ± 4.13 – –
600 200 443 ± 205 1794 ± 1287 –
1500 500 1093 ± 900 2583 ± 1226 7050 ± 2670

We chose not to present results concerning the inter-organizational level since its structure was selected to be ‘‘easy-
to-infer’’. Hence, the SBM and the MLVSBM perform well for selecting the true number of blocks QO and recovering the
lock structure. Simulations gave similar results (not reported here) when we inverse the topologies on X I and XO, showing

that information on structure transits in both ways. Moreover, when the number of nodes of the ‘‘easy-to-infer’’ level
increases, it facilitates the recovering of the clustering on the ‘‘hard-to-infer’’ level. When both levels are ‘‘hard-to-infer’’,
the inference of each level benefits from one another if the dependence between the two levels is strong enough. One can
exhibit cases where the unilevel SBM is unable to recover the clustering of any of the two levels but where the MLVSBM
succeeds in recovering the true blocks for both. Detailed results for such a simulation study are available on the MLVSBM
R package website https://chabert-liddell.github.io/MLVSBM/articles/hard_to_infer.html.

4.3. Computational costs

Inferring the blocks and the parameters of a multilevel network is a challenging task which can be time consuming. As
a guideline for readers, we present in Table 1 the average computation time using the R package MLVSBM on two cores
of a desktop computer with 32GB of RAM and a Intel R⃝ Xeon(R) CPU E5-1650 v4 @ 3.60 GHz × 12 processor running
on Ubuntu 18.04.5 LTS for the inference of simulated networks including model selection for different network sizes and
different numbers of blocks.
11
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5. Application to the multilevel network issued from a television programs trade fair

We apply our model to the data set (Brailly et al., 2016) described below.

.1. Context and description of the data set

Promoshow East is a television programs trade fair for Eastern Europe. Sellers from Western Europe and the USA come
o sell audiovisual products to regional and local buyers such as broadcasting companies. The data gather observations
n one particular audiovisual product, namely animation and cartoons. From a sociological perspective, reconstituting
nd analyzing multilevel (inter-individual and inter-organizational) networks in this industry are important. In economic
ociology, it helps redefine the nature of markets (Brailly et al., 2016, 2017; Lazega and Mounier, 2002). In the sociology
f culture, it helps understand, from a structural perspective, the mechanisms underlying contemporary globalization and
tandardization of culture (Brailly et al., 2016; Favre et al., 2016). In the sociology of organizations and collective action,
t helps understand the importance of multilevel relational infrastructures for the management of tense competition and
ooperation dilemmas by various categories of actors (Lazega, 2020), in this case the (sophisticated) sales representatives
f cultural industries.
The data were collected by face-to-face interviews. At the individual level, people were asked to select from a list

he individuals from whom they obtain advice or information during or before the trade fair. The level consists of 128
ndividuals and 710 directed interactions (density = 0.044). The individuals were affiliated to 109 organizations, each
ne containing from one to six individuals. At the inter-organizational level, two kinds of interactions were collected: a
eal network (deals signed since the last trade fair) and a meeting network (derived from the aggregation at the inter-
rganizational level of the meetings planned by individuals on the trade fair’s website). Both networks are symmetric
ith respective densities 0.067 and 0.059.

.2. Statistical analysis

The MLVSBM is inferred on the two datasets (one dataset corresponding to the deal network at the inter-organizational
evel, the other dataset to the meeting network at the inter-organizational level). In both cases the ICL criterion favors
ependence between the two levels and chooses Q̂I = 4 blocks of individuals. Q̂O is equal to 3 for the deal network and
for the meeting network.
In order to determine which is the most relevant inter-organizational network, we test the ability of the MLVSBM to

redict dyads or links in the inter-individual network when the deal or the meeting networks are considered. To do so,
e choose uniformly dyads and links to remove and try to predict them. More precisely, we set X I

ii′ = NA for a certain
percentage of (i, i′) (this percentage ranging from 5% to 40% by step-size of 5%). We also propose to remove existing links
(i.e. forcing X I

ii′ = 0 when X I
ii′ = 1 was observed, for some randomly chosen (i, i′)). The percentage of removed existing

links varies from 5% to 95% (with step-size of 5%). We repeat the following procedure 100 times:

1. Remove dyads or links uniformly at random
2. Infer the newly obtained network from scratch in order to obtain the probability of a link P(X I

ii′ = 1; θ̂ ) for each
missing dyad or for each dyad such that X I

ii′ = 0
3. Predict link among all missing dyads or among all dyads such that X I

ii′ = 0.

Missing data are handled as Missing At Random (Tabouy et al., 2019) and the probability of existence of an edge is given
by: P(X I

ii′ = 1; θ̂ ) =
∑

k,k′ τ̂
I
ikα̂

I
klτ̂

I
i′k′ . Since the result of our procedure is equivalent to a binary classification problem, we

assess the performance through the area under the ROC curve (AUC) (a random classification corresponding to AUC = 0.5).
Fig. 6 shows that using the MLVSBM compared to a single level SBM improves a lot the recovery of the inter-individual

level for this dataset. This confirms the dependence between levels detected by the ICL. Moreover, using the deal network
gives better predictions for both missing dyads and missing links than the meeting network. We also considered a merged
network at the inter-organizational level by making the union of links of the deal and the meeting network, i.e. for all
j, j′ ∈ nO, X

O,merged
jj′ = max{XO,deal

jj′ , XO,meeting
jj′ } . The improvement in terms of prediction over the deal network is not very

significant and this composite network is much harder to analyze sociologically.

Remark. Another way to simulate missing data is to consider actor non-response like in Žnidaršič et al. (2012). In our case,
it corresponds to selecting a portion of the individuals at random and putting all their out-going dyads to NA (i.e. X I

ii′ = NA
for all i′ if individual i did not respond). Then we look at the stability of the clustering as in Žnidaršič et al. (2012, 2019)
(the ARI between the clustering of the individuals with the full data and the one with the missing data). By doing so,
we notice in simulations (not reported here) that the clustering of the individuals is more stable when considering an
MLVSBM on (X I , XO,deal) than when considering a unilevel SBM on X I . This is one more clue in favor of the dependence
between the two levels.
12
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Fig. 6. AUC of the prediction for A: missing dyads, B: missing links, in function of the missing proportion for the inter-individual level. Colors
epresent different network at the inter-organizational level. None (beige) is equivalent to a single layer SBM on the individuals. The confidence
nterval is given by mean ± stderror . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)

emark. Žiberna (2019, 2020) also deals with this dataset from Brailly et al. (2016). However, Žiberna (2019) uses the
ataset collected in 2012 and Žiberna (2020) gathers the datasets collected in 2011 and 2012 while we only use the 2011
ataset. Moreover, different choices were made on the individuals and organizations to include or not. Thus, a direct
omparison does not make sense. Applying Žiberna’s method on the dataset we consider provides us with clusterings
hat somewhat agree on both levels (ARIs>0.6). We have checked that the difference derives from the fact that the two
ethods do not seek the same patterns.

.3. Analysis and comments

For the analysis, we use the MLVSBM inferred from the deal network. We select Q̂O = 3 and Q̂I = 4 blocks and the ICL
is in favor of a dependence between the two levels. This network is plotted in Fig. 7 B and we reordered the adjacency
matrices of both levels by blocks in Fig. 7 C. In Fig. 7 A, we plot a synthetic view of the blocks of this multilevel network.
The size of each node is proportional to the cardinal of each block. For the inter-organizational level, we link blocks
of organizations by αO (plain black edges) and by the probability of interactions of their individuals P(X I

ii′ = 1|ZO
Ai
, ZO

Ai′
)

(gradual blue edges). The donut charts around the nodes is the parameter γ . For the inter-individual level, blocks of
individuals are linked by αI and the donut chart for a given block is the apportionment of each block of organizations in
the individuals’ affiliation.

We can now interpret the block with respect to the actors’ covariates shown in Table 2. At the inter-organizational
level, block 1 (in red) is a residual group composed of 61 organizations that are weakly connected to the rest of the
organizations. Block 2 (in orange) consists of customers: broadcasters that come to the trade fair to buy programs and
independent buyers who buy programs, planning to sell them later to broadcasters. We observe a non-null intra-block
connection, but deals are mainly done between organizations of the blocks 2 and 3 (block 3 in yellow), the latter mostly
containing distributors.

At the inter-individual level, blocks 1 and 2 consist of buyers (exclusively for block 1). They differ in their affiliations,
both are affiliated to the second block of organizations but a larger proportion of the individuals of block 2 are affiliated to
the residual block of organizations. They also differ in the way they connect to blocks 3 and 4. Block 4 is a residual group
consisting of roughly half of the individuals. It does not exhibit any particular pattern in its affiliations and is weakly
connected, mainly inward connection from block 2. Block 3 consists of sellers giving advice to individuals of block 2 and
has reciprocal relationship with individuals of block 1. They are mainly affiliated to producing and distributing companies
of block 3 of organizations. It is also the block that has the strongest intra-block connections.

The blue edges in Fig. 7 A show that the organizations of blocks 2 and 3 and their respective individuals follow the same
pattern for their inter-block connections but differ in their intra-block connections. Individuals affiliated to organizations
of block 3 have above average intra-block connections while few contracts are signed between their organizations (mainly
distributors).

These results confirm neo-structural insights into the functioning of markets. Competition between producers/
distributors is strong: they all need to find broadcasting companies and distributors on the buying side. However, most
of them arrive to the trade fair without updated information about the products in which buyers are interested in that
year, their available budgets for each category of product, their willingness to negotiate, etc. The value of multilevel
13
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Fig. 7. Multilevel network of the Promoshow East trade fair 2011. Above: the deal network for the organizations and below: the advice network for
the individuals. A: Mesoscopic view of the multilevel network. Nodes stand for the blocks, donut charts show the relation between ZO and Z I . Black
dges are the probabilities of connection αI and αO , blue edges stand for P(X I

ii′ = 1|ZO
Ai
, ZO

Ai′
), i.e. the probability of interaction between organizations

hrough their individuals. For sake of clarity only edges with probabilities above the density are shown. B: View of the network. The size of a node
s proportional to its in-degree. Colors represent the clustering obtained with the MLVSBM. C: Matrix representation of the multilevel network. At
he bottom-left, the adjacency matrix of the advice network between individuals, at the top-right, the deal network between organizations, at the
op-left, the affiliation matrix of the individuals to the organizations. Entries are reordered by block from left to right and bottom to top. Blocks are
eparated by thin lines and levels by thick lines. The entries of the bottom-right matrix are the parameters αI , γ and αO multiplied by 100. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 2
Contingency table of covariates and clustering for the organizations
(top) and the individuals (bottom).

Organizations Covariates

Block Size Producer Distributor Media group Independent buyer Broadcaster

1 61 14 16 9 14 8
2 20 1 0 2 7 10
3 28 3 19 5 1 0

Individuals Covariates Affiliation

Block Size Buyer Seller 1 2 3

1 18 18 0 6 12 0
2 22 16 6 13 8 1
3 25 2 23 7 0 18
4 63 15 48 42 8 13

network analysis that is used here is to show that inter-individual personal relationships between individuals affiliated
with competing organizations help manage the tensions between these directly competing organizations (Lazega et al.,
2016; Lazega, 2009). This is where personal ties between individuals affiliated in these companies – especially among
sellers and buyers, but also less visibly among sellers – are important: they help manage the strong tensions between
companies by creating coopetition, i.e. cooperation among their competing firms. Here, social/advice ties between buyers
(blocks 1 and 2 of individuals) affiliated to buying companies in block 2 of organizations (broadcasting companies and
distributors) exchange advice from sellers of block 3 representing production and distribution companies: this is the
normal, stabilized, overlapping, commercial ties between companies embedded in social ties between representatives.

As seen above, block 3 has strong intra-block connections which may signal discrete coordination efforts between
sellers as shown by Brailly (2016), Brailly et al. (2016). When a seller has closed a deal with a buyer, he/she can advise
and update another seller – i.e. a coopetitor in terms of affiliation to a competing company – about other products in
which this buyer is interested, what budget is left in his/her pocket, i.e. precious information for the next sellers. This
kind of personal service is expected to be reciprocated over the years; otherwise the relationship decays. This is the most
unexpected phenomenon from an orthodox economic perspective and should lead to new perspectives in neo-structural
economic sociology (Lazega and Mounier, 2002).

This cross-level interdependence between inter-organizational ties and inter-individual ties is strong enough for
companies to be unable to lay off its sales representatives. Having long tried to replace costly trade fairs with online
websites and catalogues, companies realized that they still need the service that real persons and their personal relational
capital provide in terms of multilevel management of coopetition (Lazega, 2020).

6. Discussion

In this paper, we propose an SBM for multilevel networks. We develop variational methods for the inference of the
model and a criterion that allows us to choose the number of blocks and to state on the independence between the levels
at the same time. There are clear advantages at considering a joint modeling of the two levels over an independent model
for each level. Indeed, we show on some simulation studies that when we detect dependence between levels, it helps us
to recover the block structure of a level with low signal thanks to the structure of the other level and also to improve the
prediction of missing links or dyads. On the trade fair dataset, this joint modeling brought us a synthetic representation
of the two networks unraveling their intertwined structure and provide new insights on the social organization.

In lieu of a Bernoulli distribution, the edge distribution of any level may be extended to a valued distribution and/or
to include edge covariates in a similar way as for the SBM (Mariadassou et al., 2010). One way to account for the degree
distribution would be to use nodes degrees as covariates, another would be to rewrite the edge distribution as the Degree
Corrected SBM (Karrer and Newman, 2011). Our choice to model the interaction levels given the affiliations (A being
ixed) is driven by the fact that, in a lot of applications, these affiliations are known and the object of the analysis is the
nteractions. We choose to consider a unique affiliation per individual since this was the case on the datasets available
o us, but this approach could be extended to a less restricted number of affiliations (this model is implemented in our R
ackage). We could even consider any hierarchical structure such as multi-scale networks to model the levels given the
ierarchy or more generally multilayer networks by modeling the layers given the inter-layers.
Furthermore, our model is able to decide about the independence of the structure of connections of the two levels.

his is done by a model selection criterion. It would be interesting to test (in a statistical meaning) this independence but
e know that the variance of our estimators is underestimated because of the variational approach (see Blei et al., 2017

or a review). Besides, sociological studies stated that some individuals benefit more than others from their organization’s
nteractions (Lazega and Snijders, 2015), which could lead us to consider more local independence between levels.

For multiplex networks, De Bacco et al. (2017) use dyad predictions as a way to define interdependence between layers
hile (Stanley et al., 2016) make a clustering of layer by aggregating the most similar. Our work considers multilevel
15
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networks where each level has nodes of different natures and Fig. 6 shows that the dependence between levels leads to
a better recovery of missing information. This can be used to help data collection or to correct spurious information on
existing data as suggested in Clauset et al. (2008) or Guimerà and Sales-Pardo (2009). Indeed, one might imagine that the
data of one level may be easier to collect or to verify than the other one (for instance because it is public, already exists
or is cheaper to collect). Thus, we think that this approach could be used to leverage the interdependence in a multilevel
network in order to compensate for some missing or spurious information on a given level which is known to be difficult
to observe.
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ppendix A. Proof of Proposition 1

roposition 1. In the MLVSBM, the two following properties are equivalent:

1. Z I is independent of ZO,
2. γkl = γkl′ ∀l, l′ ∈ {1, . . . ,QO},

and imply that:

3. X I and XO are independent.

Proof. We first derive an expression for ℓγ (Z I ) = ℓγ (Z I
|A):

ℓγ (Z I
|A) =

∫
ZO

ℓγ (Z I
|A, ZO)dP(ZO)

=

∑
l1,...,lnO

ℓγ (Z I
|A, ZO

1 = l1, . . . , ZO
nO = lnO )P(Z

O
1 = l1, . . . , ZO

nO = lnO )

=

∑
l1,...,lnO

∏
j

(∏
i

ℓγ (Z I
i |A, ZO

Ai = lAi )

)
P(ZO

j = lj)

=

∑
l1,...,lnO

∏
j

(∏
i,k

γ
1
ZIi =k

Aij

klj

)
πO
lj =

∏
j

∑
l

∏
i,k

γ
Aij1ZIi =k

kl πO
l

here Ai = {j : Aij = 1}.
2. ⇒ 1.: Assume that γkl = γkl′ ∀l, l′ ∈ {1, . . . ,QO}, then:

ℓγ (Z I
|ZO, A) =

∏
k,l

γ

∑
i,j Aij1ZIi =k

1
ZOj =l

kl =

∏
k

γ

∑
i,j Aij1ZIi =k

∑
l 1ZOj =l

k1

=

∏
i,k

γ
1
ZIi =k

k1 ,

nd

ℓγ (Z I
|A) =

∏
j

∑
l

∏
i,k

γ
Aij1ZIi =k

kl πO
l

=

∏
j

∏
i,k

γ
Aij1ZIi =k

k1

∑
l

πO
l =

∏
i,k

γ
1
ZIi =k

k1 ,

ence ℓ (Z I
|ZO, A) = ℓ (Z I

|A).
γ γ
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(

1. ⇒ 2.: Assume that ℓγ (Z I
|ZO, A) = ℓγ (Z I

|A) for any values of Z I , ZO, then in particular ℓγ (Z I
1|Z

O, A) = ℓγ (Z I
1|A).

Assuming that individual 1 belongs to organization j, we can write, for any k:

P(Z I
1 = k|ZO

j , Aij = 1) = γkZOj
.

However, this quantity does not depend on ZO
j so γkZOj

= γk· for any value of k and ZO
j . And so we have γkℓ = γkℓ′ for any

ℓ, ℓ′).
1. ⇒ 3.:

ℓαI ,αO (X I , XO
|A) =

∫
zI ,zO

ℓαI ,αO (X I , XO
|A, Z I

= z I , ZO
= zO)P(Z I

= z I , ZO
= zO)dz IdzO

=

∫
zI ,zO

ℓαI (X I
|Z I

= z I )P(Z I
= z I |A, ZO

= zO)ℓαO (XO
|ZO

= zO)P(ZO
= zO)dz IdzO

=

∫
zI

ℓαI (X I
|Z I

= z I )P(Z I
= z I )dz I

∫
zO

ℓαO (XO
|ZO

= zO)P(ZO
= zO)dzO

= ℓαI (X I )ℓαO (XO)

which is the definition of the independence. □

Appendix B. Proof of Proposition 2

Proposition 2. The stochastic block model for multilevel networks is identifiable up to label switching under the following
assumptions:

A1. All coefficients of αI
· γ · πO are distinct and all coefficients of αO

· πO are distinct.
A2. nI ≥ 2QI and nO ≥ max(2QO,QO + QI − 1).
A3. At least 2QI organizations contain one individual or more.

Proof. Let θ = {πO, γ , αI , αO
} be the set of parameters and PX the distribution of the observed data. We will prove

that there is a unique θ corresponding to PX . More precisely, in what follows, we will compute the probabilities of some
particular events, from which we will derive a unique expression for the unknown parameters. The beginning of the proof
– identifiability of πO and αO – is mimicking the one given in Celisse et al. (2012). The last steps of the proof are original
work.

Notations. For the sake of simplicity, in what follows, we use the following shortened notation:

xi:k := (xi, . . . , xk), Xj,i:k = (Xji, . . . , Xjk).

Moreover, {Xj,i:k = 1} stands for {Xji = 1, . . . , Xjk = 1}.

Identifiability of πO. For any l = 1, . . . ,QO, let τl be the following probability:

τl = P(XO
ij = 1|ZO

i = l) =

∑
l′

αO
ll′π

O
l′ = (αO

· πO)l, ∀(i, j). (B.1)

Moreover, a quick computation proves that

P(XO
i,j:(j+k) = 1|ZO

i = l) = τ k+1
l (B.2)

According to Assumption A1, the coordinates of vector (τ1, . . . , τQO ) are all different. Hence, the Vandermonde matrix RO

of size QO × QO such that

RO
il = (τl)i−1, 1 ≤ i ≤ QO, 1 ≤ l ≤ QO

is invertible. We define uO
i as follows:

uO
i = PX,θ (XO

1,2:(i+1) = 1) for 1 ≤ i ≤ 2QO − 1
uO
0 = 1.

The existence of (uO
i )i=0,...,2QO−1 comes from Assumption A2 (nO ≥ 2QO). Moreover, the (uO

i )i=0,...,2QO−1 are calculated from
the marginal distribution PX . We will use these quantities to identify the parameters (πO, αO).

First we have, for 1 ≤ i ≤ 2QO − 1:

uO
i =

QO∑
P(XO

1,2:(i+1) = 1|ZO
1 = l)P(ZO

1 = l) =

QO∑
τ i
l π

O
l ,
l=1 l=1
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F
k

using Eq. (B.2). Now, let us define MO a (QO + 1) × QO matrix such that:

MO
ij = uO

i+j−2 =

QO∑
l=1

τ i−1
l πO

l τ
j−1
l , 1 ≤ i ≤ QO + 1, 1 ≤ j ≤ QO. (B.3)

or k ∈ {1, . . . ,QO + 1}, we define δk as δk = Det(MO
−k) where MO

−k is the square matrix corresponding to MO without the
th row. Let BO be the polynomial function defined as:

BO(x) =

QO∑
k=0

(−1)k+QOδk+1xk. (B.4)

• BO is of degree QO. Indeed, δQO+1 = det(MO
−(QO+1)) andM−(QO+1) = RODπORO′ where DπO = diag(πO). As a consequence,

MO
−(QO+1) is the product of invertible matrices then δQO+1 ̸= 0 and we can conclude.

• Moreover, ∀l = 1, . . . ,QO, BO(τl) = 0. Indeed, BO(τl) = det(NO
l ) where NO

l is the concatenated matrix NO
l =

(
MO

| Vl
)

with Vl = [1, τl, . . . , τ
QO
l ]

′ (computation of the determinant development against the last column). However,
from Eq. (B.3), we have MO

•j =
∑

l τ
j−1
l πO

l Vl, i.e. each column vector of MO is a linear combination of V1, . . . , VQO . As
a consequence, ∀l = 1, . . . ,QO, NO

l is of rank < QO + 1, and so BO(τl) = 0.

The (τl)l=1,...,QO being the roots of B, they can be expressed in a unique way (up to label switching) as functions of
(δk)k=0,...,QO , which themselves are derived from PX,θ . As a consequence, the identifiability of RO is derived from the
identifiability of (τl)l=1,...,QO . Using the fact that DπO = RO−1MO

−QO
RO

′
−1, we can identify πO in a unique way.

Identifiability of αO. For 1 ≤ i, j ≤ QO, we define Uij as follows:

UO
ij = P(XO

1,2:(i+1) = 1, XO
2, (nO−j+2):nO = 1)

with UO
i1 = P(XO

1,2:(i+1) = 1).

UO
i,j =

∑
l1,l2

τ i−1
l1

πO
l1α

O
l1 l2π

O
l2 (τl2 )

j−1, ∀1 ≤ i, j ≤ QO,

and as consequence UO
= RODπOαODπORO′. DπO and RO being invertible, we get: αO

= D−1
πORO−1UORO

′
−1D−1

πO . And so UO is
uniquely derived from PX , so αO is identified.

Identifiability of αI . To identify αI , we have to take into account the affiliation matrix A. Without loss of generality, we
reorder the entries of both levels such that the affiliation matrix A has its 2QI ×2QI top left block being an identity matrix
(Assumption A3).

• For any k = 1 . . . ,QI and for i = 2, . . . , 2QI , let σk be the probability P(X I
1i = 1|Z I

1 = k, A), A being such that
Ajj = 1, ∀j = 1, . . . , 2QI .

σk = P(X I
1i = 1|Z I

1 = k, A)

=

∑
k′

P(X I
1i = 1|Z I

1 = k, Z I
i = k′)P(Z I

i = k′
|Z I

1 = k, A) .

Moreover,

P(Z I
i = k′

|Z I
1 = k, A) =

∑
l

P(Z I
i = k′

|ZO
i = l, Z I

1 = k, A)P(ZO
i = l|Z I

1 = k, A)

=

∑
l

γklP(ZO
i = l|Z I

1 = k, A) . (B.5)

However, by Bayes’ formula

P(ZO
i = l|Z I

1 = k, A) =
P(Z I

1 = k|ZO
i = l, A)P(ZO

i = l)
P(Z I

1 = k, A)
.

Taking into the fact that i ̸= 1 and A is such that 1 belongs to organization 1 and i to organization i, we have:
P(Z I

1 = k|ZO
i = l, A) = P(Z I

1 = k|A). And so

P(ZO
i = l|Z I

1 = k, A) = P(ZO
i = l|A) = πO

l .

Consequently, from Eq. (B.5), we have:

P(Z I
i = k′

|Z I
1 = k, A) =

∑
γk′ lπ

O
k

l
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and so:

σk =

∑
k′

P(X I
1i = 1|Z I

1 = k, Z I
i = k′)

∑
l

γk′ lπ
O
k

=

∑
k′ l

αI
kk′γk′ lπ

O
l = (αI

· γ · πO)k

= (αI
· π I )k, where π I

= γ · πO.

• Now, we prove that ∀i = 1, . . . , 2QI − 1,

P(X I
1,2:(i+1) = 1|Z I

1 = k, A) = σ i
k. (B.6)

Indeed,

P(X I
1,2:(i+1) = 1|Z I

1 = k, A)

=

∑
k2:(i+1)

P(X I
1,2:(i+1) = 1|Z I

1:(i+1) = (k, k2:(i+1)), Z I
1 = k)P(Z I

2:(i+1) = k2:i+1|Z I
1 = k, A)

=

∑
k2:(i+1)

P(X I
1,2:(i+1) = 1|Z I

1:(i+1) = (k, k2:(i+1)))P(Z I
2:(i+1) = k2:i+1|A)

=

∑
k2:(i+1)

P(X I
1,2:(i+1) = 1|Z I

1:(i+1) = (k, k2:(i+1)))
∑
l2:(i+1)

P(Z I
2:(i+1) = k2:(i+1), ZO

2:(i+1) = l2:(i+1), A).

Note that, to go from line 2 to line 3, we used the fact that P(Z I
2:(i+1) = k2:i+1|Z I

1 = k, A) = P(Z I
2:(i+1) = k2:i+1|A), which

is due the particular structure of A (left diagonal block of size at least 2QI , i.e. for any i′ = 1, . . . , 2QI , individual i′
belongs to organization i′). Moreover, we can write:

P(Z I
2:(i+1) = k2:(i+1), ZO

2:(i+1) = l2:i+1|A)

=

[ ∏
λ=2,...,i+1

P(Z I
λ = kλ|ZO

λ = lλ)P(ZO
λ = lλ)

]

=

[ ∏
λ=2,...,i+1

γkλ lλπ
O
λ

]
.

Moreover, by conditional independence of the entries of the matrix X I given the clustering we have:

P(X I
1,2:(i+1) = 1|Z I

1 = k, Z I
2:(i+1) = k2:(i+1)) =

∏
λ=2,...,i+1

αI
kkλ .

As a consequence,

P(X I
1,2:(i+1) = 1|Z I

1 = k, A) =

∑
k2:(i+1),l2:(i+1)

∏
λ=2,...,i+1

αI
kkλγkλ lλπ

O
λ

=

∏
λ=2,...,i+1

∑
kλ,lλ

αI
kkλγkλ lλπ

O
λ = σ i

k

• Then we define (uI
i )i=0,...,2QI−1, such that uI

0 = 1 and ∀1 ≤ i ≤ 2QI − 1:

uI
i = P(X I

1,2:(i+1) = 1|A)

=

∑
k,l

P(X I
1,2:(i+1) = 1|Z I

1 = k)P(Z I
1 = k|ZO

1 = l, A)P(ZO
1 = l)

=

∑
k

σ i
k

∑
l

γklπ
O
l  

=π I
k

=

∑
k

σ i
kπ

I
k.

Note that the (uI )’s can be defined because nI ≥ 2QI (assumption A2).
• To conclude we use the same arguments as the ones used for the identifiability of αO, i.e. we define M I a (QI +1)×QI

matrix such that M I
= uI together with the matrices M I and the polynomial function BI (see Eq. (B.4)). Let RI
ij i+j−2 −k
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I

be a QI × QI matrix such that RI
ik = σ i−1

k . RI is an invertible Vandermonde matrix because of assumption A1 on
αI

· γ · πO. As before, RI can be identified in unique way from BI . Then, noting that M I
−(QI+1) = RIDπ IRI ′ where

Dπ I = diag(π I ) = diag(γ · πO), we obtain: Dπ I = (RI )−1M I
−QI

(RI
′
−1), which is uniquely defined by PX . Now, let us

introduce

U I
ij = P(X I

1,2:(i+1) = 1, X I
2, (nI−j+2):nI = 1)

with U I
i1 = P(X I

1,2:(i+1) = 1). Then we have U I
= RIDπ IαIDπ IRI ′ and so

αI
= D−1

π I (RI )−1U I (RI )′−1D−1
π I . As a consequence, αI is uniquely identified from PX .

dentifiability of γ . For any 2 ≤ i ≤ QI and 2 ≤ j ≤ QO, let U IO
i,j be the probability that X I

1,2:i = 1 and XO
1,(i+1):(i+j−1) = 1.

Note that the U IO
i,j can be defined because nO ≥ QI + QO − 1 and nI ≥ QI (assumption A2).

• Then, for all 2 ≤ i ≤ QI and 2 ≤ j ≤ QO,

U IO
ij = P(X I

1,2:i = 1, XO
1,(i+1):(i+j−1) = 1|A)

=

∑
k,l

P(X I
1,2:i = 1, XO

1,(i+1):(i+j−1) = 1|A, Z I
1 = k, ZO

1 = l)

×P(Z I
1 = k, ZO

1 = l, A) . (B.7)

• We first prove that :

P(X I
1,2:i = 1, XO

1,i+1:i+j−1 = 1|A, Z I
1 = k, ZO

1 = l) = σ i−1
k τ

j−1
l . (B.8)

Indeed,

P(X I
1,2:i = 1, XO

1,(i+1):(i+j−1) = 1|A, Z I
1 = k, ZO

1 = l) =

=

∑
k2:i,l2:nO

P(X I
1,2:i = 1, XO

1,(i+1):(i+j−1) = 1|Z I
1:i = (k, k2:i), ZO

= (l, l2:nO ), A)

× P(Z I
2:i = k2:i, ZO

2:nO = l2:nO |Z
I
1 = k, ZO

1 = l, A)

=

∑
k2:i,l2:nO

P(X I
1,2:i = 1|Z I

1:i = (k, k2:i))

× P(XO
1,(i+1):(i+j−1) = 1|ZO

1 = l, ZO
(i+1):(i+j−1) = l(i+1):(i+j−1))

× P(Z I
2:i = k2:i, ZO

2:nO = l2:nO |Z
I
1 = k, ZO

1 = l, A) . (B.9)

Moreover, let us have a look at P(Z I
2:i = k2:i, ZO

= l2:nO |Z
I
1 = k, ZO

1 = l, A):

P(Z I
2:i = k2:i, ZO

2:nO = l2:nO |Z
I
1 = k, ZO

1 = l, A)

= P(Z I
2:i = k2:i|ZO

2:nO = l2:nO , Z
I
1 = k, ZO

1 = l, A) × P(ZO
2:nO = l2:nO |Z

I
1 = k, ZO

1 = l, A) .

Because A has a diagonal block of size ≥ QI , we have, for any i = 1, . . . ,QI , Aij = 1 if j = i, 0 otherwise, we have

• P(Z I
2:i = k2:i|ZO

2:nO
= l2:nO , Z

I
1 = k, ZO

1 = l, A) = P(Z I
2:i = k2:i|ZO

2:i = l2:i),
• P(ZO

2:nO
= l2:nO |Z

I
1 = k, ZO

1 = l, A) = P(ZO
2:nO

= l2:nO ) .

As a consequence,

P(Z I
2:i = k2:i, ZO

2:nO = l2:nO |Z
I
1 = k, ZO

1 = l, A) =

P(Z I
2:i = k2:i|ZO

2:i = l2:i)P(ZO
2:i = l2:i)P(ZO

(i+1):(i+j−1) = l(i+1):(i+j−1))

×P(ZO
(i+j):nO = l(i+j):nO ) .

Going back to Eq. (B.9) and decomposing the summation we obtain:

P(X I
1,2:i = XO

1,(i+1):(i+j−1) = 1|A, Z I
1 = k, ZO

1 = l)

=

∑
k2:i,l2:nO

P(X I
1,2:i = 1|Z I

1:i = (k, k2:i))

× P(XO
1,(i+1):(i+j−1) = 1|ZO

1 = l, ZO
(i+1):(i+j−1) = l(i+1):(i+j−1))

× P(Z I
2:i = k2:i|ZO

2:i = l2:i)P(ZO
2:i = l2:i)P(ZO

(i+1):(i+j−1) = l(i+1):(i+j−1))

× P(ZO
= l )
(i+j):nO (i+j):nO
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=

∑
k2:i

P(X I
1,2:i = 1|Z I

1:i = (k, k2:i))
∑
l2:i

P(Z I
2:i = k2:i|ZO

2:i = l2:i)P(ZO
2:i = l2:i)∑

l(i+1):(i+j−1)

P(XO
1,(i+1):(i+j−1) = 1|ZO

1 = l, ZO
(i+1):(i+j−1) = l(i+1):(i+j−1))

×P(ZO
(i+1):(i+j−1) = l(i+1):(i+j−1))  

=P(ZO(i+1):(i+j−1)=l(i+1):(i+j−1)|ZO1 =l)

∑
l(i+j):nO

P(ZO
(i+j):nO = l(i+j):nO )  

=1

=

∑
k2:i

P(X I
1,2:i = 1|Z I

1 = k, Z I
2:i = k2:i)P(Z I

2:i = k2:i|A) × P(XO
1,(i+1):(i+j−1) = 1|ZO

1 = l)

=

∑
k2:i

P(X I
1,2:i = 1|Z I

1 = k, Z I
2:i = k2:i)P(Z I

2:i = k2:i|Z I
1 = k, A)

×P(XO
1,(i+1):(i+j−1) = 1|ZO

1 = l)

= P(X I
1,2:i = 1|Z I

1 = k, A)P(XO
1,(i+1):(i+j−1) = 1|ZO

1 = l) .

Finally, we have :

P(X I
1,2:i = 1|Z I

1 = k, A) = σ i−1
k , from Eq. (B.6)

P(XO
1,(i+1):(i+j−1) = 1|ZO

1 = l) = τ
j−1
l ,

and so, we have proved equality (B.8).
• Now, A11 = 1 implies P(Z I

1 = k, ZO
1 = l|A) = γklπ

O
l and combining this result with Eqs. (B.7) and (B.8) leads to:

U IO
ij =

∑
k,l σ

i−1
k γklπ

O
l τ

j−1
l . Setting

U IO
1j = P(XO

1,i+1 = 1, . . . , XO
1,i+j−1 = 1|A) =

∑
k,l

γklπ
O
l τ

j−1
l , for j > 1

U IO
i1 = P(X I

12 = · · · = X I
1,i = 1|A) =

∑
k,l

γklπ
O
l , for i > 1

U IO
11 = 1

we obtain the following matrix expression for U IO: U IO
= RIγDπORO′

where U IO is completely defined by PX,θ and
the other terms have been identified before. Thus γ = (RI )−1U IO(RO′

)−1D−1
πO and γ is identified. □

Appendix C. Details of the variational EM

The variational bound for the stochastic block model for multilevel network can be written as follows:

Iθ (R(Z I , ZO
|A)) =

∑
j,l

τO
jl logπO

l +

∑
i,k

τ I
ik

∑
j,l

Aijτ
O
jl log γkl

+
1
2

∑
i′ ̸=i

∑
k,k′

τ I
ikτ

I
i′k′ logφ

(
X I
ii′ , α

I
kk′
)
+

1
2

∑
j′ ̸=j

∑
l,l′

τO
jl τ

O
j′ l′ logφ

(
XO
jj′α

O
ll′

)
−

∑
i,k

τ I
ik log τ I

ik −

∑
j,l

τO
jl log τO

jl

The variational EM algorithm then consists of iterating the two following steps. At iteration (t + 1):

VE step compute

{τ I , τO
}
(t+1)

= argmax
τ I ,τO

Iθ (t) (R(Z I , ZO
|A))

= arg min
τ I ,τO

KL
(
R(Z I , ZO

|A) ∥ Pθ (t) (Z
I , ZO

|X I , XO, A)
)

.

M step compute

θ (t+1)
= argmax

θ
Iθ (R(t+1)(Z I , ZO

|A)).
21
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γ

i
o
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The variational parameters are sought by solving the equation:

∆τ I ,τO
(
Iθ (R(Z I , ZO

|A)) + L(τ I , τO)
)

= 0,

where L(τ I , τO) are the Lagrange multipliers for τ I
i , τO

j for all i ∈ {1, . . . , nI}, j ∈ {1, . . . , nI}. There is no closed-
form formula but when computing the derivatives, we obtain that the variational parameters follow the fixed point
relationships:

τ̂O
jl ∝πO

l

∏
i,k

γ
Aij τ̂ Iik
kl

∏
j′ ̸=j

∏
l′

φ(XO
jj′ , α

O
ll′ )

τ̂O
j′ l′

τ̂ I
ik ∝

∏
j,l

γ
Aij τ̂Ojl
kl

∏
i′ ̸=i

∏
k′

φ(X I
ii′ , α

I
kk′ )

τ̂ I
i′k′ ,

which are used in the VE step to update the τ I
i ’s and τO

j ’s.
On each update, the variational parameters of a certain level depend on both the parameter γ and the variational

parameters of the other level, which emphasizes the dependency structure of this multilevel model and the role of γ as
the dependency parameter of the model. Notice also that when γkl = γkl′ = π I

k for all l, l′, that is the case of independence
etween the two levels then we can rewrite the fixed point relationships as follows:

τ̂O
jl ∝ πO

l

∏
j′ ̸=j

∏
l′

φ(XO
jj′ , α

O
ll′ )

τ̂O
j′ l′ and τ̂ I

ik ∝ π I
k

∏
i′ ̸=i

∏
k′

φ(X I
ii′ , α

I
kk′ )

τ̂ I
i′k′ ,

which is exactly the expression of the fixed point relationship of two independent SBMs. Then, for the M step, we derive
the following closed-form formulae:

π̂O
l =

1
nO

∑
j

τ̂O
jl α̂O

ll′ =

∑
j′ ̸=j τ̂

O
jl X

O
jj′ τ̂

O
j′ l′∑

j′ ̸=j τ̂
I
jlτ̂

I
j′ l′

γ̂kl =

∑
i,j τ̂

I
ikAijτ̂

O
jl∑

i,j Aijτ̂
O
jl

α̂I
kk′ =

∑
i′ ̸=i τ̂

I
ikX

I
ii′ τ̂

I
i′k′∑

i′ ̸=i τ̂
I
ikτ̂

I
i′k′

or which the gradient

∆θ

(
Iθ (R(Z I , ZO

|A)) + L(πO, γ )
)
,

s null. The term L(πO, γ ) contains the Lagrange multipliers for πO and γk· for all k ∈ {1, . . . ,QI}.
Model parameters have natural interpretations. πO

l is the mean of the posterior probabilities for the organizations to
elong to block l. αI

kk′ (resp. α
O
ll′ ) is the ratio of existing links over possible links between blocks k and k′ (resp. l and l′).

kl is the ratio of the number of individuals in block k that are affiliated to any organization of block l on the number of
ndividuals that are affiliated to any organization of block l. If γ is such that the levels are independent, then any column
f γ represents the proportion of individuals in the different blocks:

π I
k = γk1 =

1
nI

∑
i

τ̂ I
ik.

Appendix D. Details of the ICL criterion

We now derive an expression for the Integrated Complete Likelihood (ICL) model selection criterion. Following Daudin
et al. (2008), the ICL is based on the integrated complete likelihood i.e. the likelihood of the observations and the latent
variables where the parameters have been integrating out against a prior distribution. The latent variables (Z I , ZO) being
nobserved, they are imputed using the maximum a posteriori (MAP) or τ̂ . We denote by ẐO and Ẑ I the imputed latent
ariables. After imputation of the latent variables, an asymptotic approximation of this quantity leads to the ICL criterion
iven in the paper (Eq. (9)) and recalled here:

ICL(QI ,QO) = log ℓ̂θ (X
I , XO, Ẑ I , ẐO|A,QI ,QO)

−
1
2
QI (QI + 1)

2
log

nI (nI − 1)
2

−
QO(QI − 1)

2
log nI

−
1
2
QO(QO + 1)

2
log

nO(nO − 1)
2

−
QO − 1

2
log nO.

et Θ = ΠO
× AI

× AO
× Γ be the space of the model parameters. We set a prior distribution on θ :

p(θ |Q ,Q ) = p(γ |Q ,Q )p(πO
|Q )p(αI

|Q )p(αO
|Q )
I O I O O I O

22
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T

ℓ

D
l

N

T

where p(πO
|QO) is a Dirichlet distribution of hyper-parameter (1/2, . . . , 1/2) and p(αI

|QI ) and p(αO
|QO) are independent

Beta distributions.
The marginal complete likelihood is written as follows:

log ℓθ (X, Z|A,QI ,QO) = log
(∫

Θ

ℓθ (X I , XO, Z I , ZO
|θ, A,QI ,QO)p(θ |QI ,QO)dθ

)
= log ℓαI (X I

|Z I ,QI ) (D.1)

+ log ℓγ (Z I
|A, ZO,QI ,QO) (D.2)

+ log ℓαO,πO (XO, ZO
|QO) . (D.3)

The quantity defined in (D.3) evaluated at ZO
:= ẐO is approximated as in Daudin et al. (2008) by

log ℓαO (XO, ẐO,QO) ≈ nO→∞ log ℓ
α̂O,π̂O (XO, ẐO|QO) − pen(πO, αO,QO)

pen(πO, αO,QO) =
QO−1

2 log nO +
1
2
QI (QI+1)

2 log nI (nI−1)
2

. (D.4)

his approximation results from a BIC-type approximation of log ℓ
α̂O (XO

|ẐO,QO) and a Stirling approximation of log

πO (ẐO,QO).
The same BIC-type approximation on log ℓαI (X I

|Ẑ I ,QI ) (Eq. (D.1)) leads to:

log ℓαI (X I
|Ẑ I ,QI ) = nI→∞ log ℓ

α̂I (X I
|Ẑ I ,QI ) + pen(αI ,QI )

with pen(αI ,QI ) =
1
2
QI (QI+1)

2 log nI (nI−1)
2

. (D.5)

For quantity (D.2) depending on γ and Z I given (QI ,QO), we have to adapt the calculus. Let us set independent
irichlet prior distributions of order QI D(1/2, . . . , 1/2) on the columns γ·l. We are able to derive an exact expression of
og ℓγ (Z I

|A, ZO,QI ,QO):

ℓγ (Z I
|A, ZO,QI ,QO) =

∫
ℓ(Z I

|A, ZO, γ ,QI ,QO)p(γ ,QI ,QO)dγ

=

∏
i

∫ ∏
j,k,l

γ
AijZ IikZ

O
jl

kl p(γkl)dγkl

=

∏
l

∫ ∏
k

γ
Nkl
kl p(γkl)dγkl, where Nkl =

∑
ij

AijZ I
ikZ

O
jl

=

∏
l

∫ ∏
k

γ
Nkl+a−1
k,l

Γ (1/2 · QI )
Γ (1/2)QI

dγkl

=
Γ (1/2QI )QO

Γ (1/2)QO+QI

∏
l

∏
k Γ (Nkl + 1/2)

Γ (1/2QI +
∑

k Nkl)
.

ow, using the fact that logΓ (n + 1)
n→∞

∼ (n + 1/2) log n + n, we obtain:

log ℓγ (Z I
|A, ZO,QI ,QO) ≈ (nO,nI )→∞

∑
k,l(Nkl logNkl + Nkl)

−
∑

l

(
QI−1
2 +

∑
k Nkl

)
log
(∑

k Nkl
)
−
∑

k,l Nkl.
(D.6)

he quantity (D.6) evaluated at (Z I , ZO) := (Ẑ I , ẐO) can be reformulated in the following way:

log ℓγ (Ẑ I |A, ẐO,QI ,QO) ≈ (nO,nI )→∞ log ℓγ̂ (Ẑ I |A, ẐO,QI ,QO) −
QI−1
2

∑
l log

∑
i,j AijẐO

jl

with γ̂kl =

∑
i,j Ẑ

I
ikAij Ẑ

O
jl∑

i,j Aij Ẑ
O
jl

Noticing that log
∑

i,j AijẐO
jl = log nI + log

∑
i,j Aij Ẑ

O
jl

nI
= O(log nI ) leads to

log ℓγ (Ẑ I |A, ẐO,QI ,QO) ≈(nO,nI )→∞ log ℓγ̂ (Ẑ I |A, ẐO,QI ,QO) −
QI − 1

2
QO log nI . (D.7)

Combining Eqs. (D.4), (D.5) and (D.7) we obtain the given expression.
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