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INTRODUCTION

Contemporary societies are organisational socie-
ties (Perrow, 1992), promoting combined indi-
vidual agency and collective agency by organised 
entities. In order to measure the extent to which 
they are linked, one solution is to consider them 
together: action at the level of individuals and 
collective action at the level of organisations and 
institutions can be jointly analysed methodologi-
cally by statistically combining microscopic and 
mesoscopic observations as multilevel network 
analysis. This provides a renewed understanding 
of the verticality of actors’ positions in social life 
and a new perspective on the social world (Lazega & 
Snijders, 2015). Both levels are different and 
interdependent and multilevel network analysis 
as a research methodology examines these inter-
dependencies systematically. As superposed 
levels of agency, they can be examined separately 
as well as jointly since they are linked by the 
affiliation of members of one level to collective 
actors at the higher level. Affiliations can be con-
sidered as indicators of deeper processes charac-
terising the ‘duality’ of individuals and groups 
(Breiger, 1974) in which the co-constitution 
of  levels are the expression of their vertical 
interdependencies.

In this chapter we focus on a specific kind of 
multilevel network analysis that Snijders (2016), 
in his overview of the ‘multiple flavours of mul-
tilevel network analyses’, identifies as multilevel 
network analysis (MNA) – that is, a framework 
in which different kinds of actors operate at each 
level and in which both individual and collective 
agency takes place at each level. Within-level ties 
exist between individuals who exchange, but also 
between organisations that collaborate, and each 
individual is also affiliated to one or more organisa-
tions. Since this method of contextualisation con-
siders several interconnected systems of agency, 
for cross-sectional data this can be expressed by 
the multilevel exponential random graph modelling 
(ERGM) approach of Wang et  al. (2013b). Each 
‘level’ here is a set of actors, or agents, and the lev-
els are interdependent with respect to the conditions 
for action and/or outcomes. A hierarchical nesting 
relation between the levels, which is the traditional 
basis of statistical multilevel analysis, is not required 
for the data structure of multilevel networks.

Figure 32.1 is a graph representation of a mul-
tilevel network of scientists and their laborato-
ries in their field of research. Lines between blue 
nodes (squares) represent interorganisational col-
laborations, and lines between red nodes (circles) 
represent an interpersonal advice network. Lines 
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between circles and squares represent cross-level 
membership of researchers in laboratories.

Statistical methodology was developed to use 
such datasets from a sociological perspective. 
Indeed, studying contextual effects on individual 
behaviour can be misleading with methods (such as 
linear regression) that look only at individual char-
acteristics (Robinson, 1950; Snijders & Bosker, 
2012). For example, a scientist’s work influences 
her/his performance or capacity to obtain fund-
ing, but this influence varies depending on the 
laboratories with which this scientist is affiliated. 
Hierarchical linear models can account for such 
contextual effects, where within-laboratory effects 
are obtained first, then between-laboratories vari-
ations are represented by meta-analysis across 
these effects. This approach is also known as 
multilevel analysis of networks (MAN), in which 
individuals’ actions, beliefs and performances 
within groups are analysed taking into account 
their nested collective memberships (Snijders & 
Bosker, 2012). MAN treats the nested structure 
as a given exogenous structure, and does not aim 
to take into account and model the dyadic and 
higher-order interdependencies between individu-
als based on their relationships or links between 
groups. It is not plausible that such groups lack an 
internal structure, nor that they lack links among 
each other. Network analyses help in introduc-
ing more realistic approximations of the internal 
structure of these groups and of their interdepend-
encies into the modelling of human and social 
action. This is where MNA becomes useful which 

aims at modelling the nested structure as part 
of the endogenous social process. Lazega et  al. 
(2008) show that it is not enough for a researcher 
to be central at the individual-level network (a big 
fish) to be recognised. His/her achievements vary 
depending on whether this scientist operates in a 
big or small, central or marginal laboratory (a big 
pond or a small pond). Position in such multilevel 
networks can thus be construed as combining both 
networks in four categories: a big fish in a big pond 
(BFBP), a big fish in a small pond (BFSP), etc. In 
the case in point that will be presented below, the 
BFBP were the most successful and only the lit-
tle fish (LF) in the big ponds could catch up with 
them over time. In a different context with dif-
ferent constraints, Bellotti et  al. (2016) find that 
BFSP do better than BFBP.

To test such hypotheses, Wang et  al. (2013b) 
pioneered ERGM specifications for multilevel 
networks, and demonstrated the features of mul-
tilevel ERGMs with simulation studies and mod-
elling examples. Combining multilevel network 
structure and nodal attributes, Wang et al. (2016a, 
2016b) proposed social selection models (SSMs) 
where the existence of multilevel network ties is 
conditionally dependent on not only the existence 
of other network ties but also on nodal attributes. 
They demonstrated that nodal attributes may affect 
network structures both within and across levels.

By treating network ties as outcome variables, 
on the one hand, ERGMs and SSMs are designed 
for modelling the interdependencies among the 
within and meso level, and how various attributes 

Figure 32.1 Example of visualisations of multilevel networks in French cancer research 
(2000) used to identify multilevel relational infrastructures
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of nodes at different levels affect tie formation 
in a multilevel context. On the other hand, auto-
logistic actor attribute models (ALAAMs), also 
known as social influence models (Robins & 
Pattison, 2001b; Daraganova, 2013), treat network 
structures as exogenous, and model nodal out-
comes as a combined result of individual’s attrib-
utes, network positions, as well as the outcomes 
of their networked neighbours. Instead of treating 
individual outcomes as independent observations, 
ALAAMs allow us to test the interdependencies 
among the outcomes established by network ties 
as channels of transmission or influence. In multi-
level networks, outcomes can be measured at dif-
ferent levels, and multilevel ALAAMs will enable 
us to test how individuals’ positions in a multilevel 
network and how attributes or outcomes of nodes 
at a different level may affect individual outcomes.

In the following section, we review ERGMs 
and SSMs for multilevel networks, and propose 
some model specifications for ALAAMs for mul-
tilevel networks. Using the French cancer research 
elite dataset, we demonstrate how these models 
may answer the following key research questions:

ERGM: How may within-level network structures 
affect network structures at a different level 
through meso-level interactions?
SSM: How may attributes of nodes at one level 
affect network structures at a different level?
ALAAM: How may individuals’ outcomes be 
affected by multilevel network structure and 
outcomes of others?

THE MODELS

Multilevel Network Representation

The simplest multilevel network consists of nodes 
from two levels as shown in Figure 32.2. Using 
the French cancer research elite dataset as an 
example, one of the levels consists of research 
laboratories and their formal collaboration ties. 
We label this collaboration network as (A) which 
is a collection of collaboration ties (A = {Aij}) 
where (Aij = 1) if there is a collaboration between 
laboratories i and j, otherwise (Aij = 0). The other 
level consists of researchers and their advice 
exchange network which is labelled as (B = {Bkl}). 
Each of the researchers in (B) are members of 
laboratories in (A). The two-mode affiliation net-
work between researchers and laboratories forms 
the meso-level network (X = {Xik}). The overall 
two-level network (M) consists of the two 

within-level and one meso-level networks (M = 
{A,B,X}). The various nodal attributes (e.g., 
researcher’s gender and age, laboratory’s location 
and size) are labelled by Y Y Y,i

A
k
B( ){ }=  where Yi

A 
corresponds to attributes of laboratory i, and Yk

B 
for researcher k. We use these labels as random 
variables and their lower cases as instances of the 
random variables for ERGMs and ALAAMs 
described below.

ERGM and SSM for Multilevel 
Networks

Exponential random graph models (ERGMs) 
model social network tie formation as a result of 
various social processes arising from the interde-
pendent nature of social ties – that is, the occur-
rence of one tie may be dependent on the existence 
of other ties. These social processes are represented 
by subgraphs, or graph configurations where all 
ties within each configuration are considered inter-
dependent. Using the various network labels for the 
multilevel data structure described before, we can 
express ERGM for multilevel network as

A a B b X x

z A B X

Pr , ,

1
exp , ,Q QQ

∑κ
θ

( )

( )

= = = =

where
zQ are graph statistics counting the number of 

graph configurations of type Q.
θQ are model parameters associated with zQ, 

where a positive and statistically significant 
parameter estimate suggests the configuration 
happens more than one would expect by chance 
given the rest of the model. Negative parameters 
mean the opposite.

κ is a normalising constant ensuring a proper 
probability distribution. κ is intractable even for 
small networks due to the size of the graph space 
grows exponentially. The properties and ERGM 
and estimation of ERGM parameters usually rely 
on simulations.

From the dyadic independent models to social 
circuit models (Snijders et  al., 2006), Pattison 
and Snijders (2013) proposed a hierarchy of 
network tie dependence assumptions guiding 
the ERGM specification development. These 
tie dependence assumptions form theoretical 
bases for constructing ERGM configurations. 
In single-level networks, such dependencies are 
usually based on network ties of a single type –  
for example, the friend of a friend is a friend 
based on which we can derive a friendship triangle 
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configuration – or more formally the Markov 
models (Frank & Strauss, 1986). The most cur-
rent commonly applied ERGM specifications for 
one-mode networks are based on social circuit 
dependence assumption (Snijders et  al., 2006).  
Figure 32.3 presents some ERGM configurations 
for directed one-mode networks that we use to 
model within-level network structures.

Extending these tie dependence assumptions 
to multilevel networks, Wang et al. (2013b) pro-
posed ERGM for multilevel networks with con-
figurations involving both within- and meso-level 
ties of different types. For example, a cross-level 
four-cycle follows the social circuit dependent 
assumption but has two ties from two different 
levels and two affiliations ties. Figure 32.4 lists a 
few examples of ERGM configurations for multi-
level networks. For the French cancer researcher 

context, these configurations allow us to test 
how interlaboratory collaboration and researcher 
advice exchange may affect each other through 
cross-level affiliations.

SSMs extend ERGMs by introducing nodal 
covariates to ERGM graph configurations based 
on theory and assumptions that social actors with 
different attributes may have different motiva-
tions to form social ties (Robins et  al., 2001a); 
homophily is one such example where people 
with similar attribute values may be more likely 
to form ties.

SSMs for multilevel networks can be expressed 
as

M m Y y Y y

z M Y Y

Pr | ,

1
exp , ,

A A B B

Q Q
A B

Q
∑κ

θ

( )
( )

= = = =

Figure 32.2 A two-level network representation
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where attribute values form nodes of different lev-
els serve as covariates, and form part of the graph 
configurations zQ(M,YA,YB). Within each configura-
tion, network tie variables are not only dependent 
on each other, but also dependent on nodal attribute 
values. Nodal attributes can have typical forms of 
binary (e.g., pass or fail of a test), continuous (e.g., 
age), or categorical (e.g., race). Figure 32.5 lists a 
few SSM configurations we used in the modelling 

applications in this chapter. Note that, depending 
on the types of attribute, these interaction terms can 
be calculated differently. For example, a positive 
‘Interaction’ effect for binary attribute may suggest 
homophily – that is, nodes having the attribute are 
more likely to form network ties – while for contin-
uous attributes, the ‘Interaction’ statistics are cal-
culated based on the absolute difference between 
the attribute values of the nodes in the dyad. 

Figure 32.4 ERGM configurations for multilevel networks. Nodes from different levels are 
represented by different shapes

Figure 32.3 ERGM configurations for within-level networks
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Figure 32.6 Example ALAAM configurations for multilevel networks. Nodes labelled with ‘1’ 
are nodes having the outcome variable as ‘1’

Homophily can then be interpreted from negative 
parameter estimates for such ‘Interaction’ effects – 
that is, the smaller the difference in attribute values, 
the more likely to form a tie. The same applies to all 
within- and multilevel configurations. See a more 
comprehensive list of SSM configurations in Wang 
et al. (2016a and 2016b).

ALAAM for Multilevel Networks

Auto-logistic actor attribute models share similar 
model constructs as ERGMs, except that the out-
come variables in ALAAMs are binary outcome 
measures for each individual nodes, and network 
ties or structures as well as other nodal attributes 
are treated as predictors for nodal outcomes. 
Instead of testing how nodal attributes may affect 
tie formation as in SSMs, ALAAMs are also 
known as social influence models (Robins et  al., 
2001b) aiming at testing how network structure 
affects nodal outcomes while taking into consid-
eration the interdependencies among the outcomes 
established by network ties connections – that is, 

individual outcomes may be dependent on the out-
comes of reachable nodes in the given network.

For a two-level network, let YA and YB denote 
the outcome of nodes in level A and B, and Y′A 
and Y′B denote other nodal attributes, ALAAMs 
for two-level network can be expressed as

Y y Y y M m Y y Y y

z Y Y M Y Y

Pr , | , ,

1
exp , , , ,

A A B B A A B B

Q Q
A B A B

Q
∑κ

θ
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= = = ′ = ′ ′ = ′

= ′ ′

where the variables involved in ALAAM graph 
configurations zQ(YA,YB,M,Y′A,Y′B) reflect the 
possible interdependencies among variables 
(YA,YB,M,Y′A,Y′B) contributing towards nodal out-
comes at both levels. Figure 32.6 presents some 
example ALAAM configurations.

ALAAMs for multilevel networks allow us to 
test hypotheses for both within- and across-level 
influence. Using the French cancer researcher data 
as an example where big fish (BF) and big pond 
(BP) represent high-performance researchers and 
laboratories, example hypotheses may include:

Figure 32.5 Example configurations for social selection models. Attribute values of solid 
nodes are counted towards the graph statistics
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Within the researcher level, seeking advice from 
BF is more likely to be associated with other BF.
Within the laboratory level, collaborating with 
BP is more likely to be associated with other BP.
Across level, BF are more likely to be members 
of BP.

For more complex cross-level configuration, using 
the affiliation-based contagion (TXBX) as an 
example, we can test whether high research perfor-
mance is more contagious through advice networks 
within the same laboratory rather than across dif-
ferent laboratories. We demonstrate some examples 
of ALAAMs in the application section.

Model Estimation and Selection

Using binary representations of graphs and nodal 
outcome variables, for a directed network with (n) 
nodes, the number of possible graphs can be calcu-
lated as 2n(n−1) while the number of possible nodal 
level outcomes can be calculated as 2n These 
make the normalising constants (κ) intractable in 
ERGMs and ALAAMs. The parameter estima-
tions usually rely on simulation-based numerical 
approximation methods (Snijders, 2002; Handcock 
et  al., 2008; Stivala et  al., 2020). These methods 
typically involve comparisons between the 
observed graph or outcome attribute statistics and 
simulated samples from a given set of parameter 
values. Such comparisons provide directions and 
scales for updating parameter values with a goal 
that repeated updates of parameter values will 
converge and the simulated samples from the con-
verged parameters can reproduce features of the 
observed data by testing statistics such as t-ratios, 
where (t-ratio < 0.1) across all modelled effects 
suggest a model has converged. For parameter 
estimation, Snijders (2002) proposed algorithms 
for Markov chain Monte Carlo (MCMC) maxi-
mum likelihood estimations, while Koskinen et al. 
(2010) and Caimo and Friel (2011) proposed esti-
mation procedures using Bayesian approxima-
tions. Stivala et al. (2020) proposed algorithms for 
estimating large networks with millions of nodes.

Once parameter estimates, hence a converged 
model, are obtained, the adequacy or model good-
ness of fit (GOF) of the model can be tested by 
simulating the converged model, and collecting a 
greater range of graph statistics beyond the ones 
included in the model specification, such as the 
degree distributions, clustering coefficients and 
geodesic distributions, as representations of the 
model distribution. Comparing such distributions 
with the observed statistics using t-ratios can 
serve as the GOF testing statistics, where a t-ratio 

less than 2.0 suggests the corresponding graph sta-
tistic is adequately captured by the model.

These algorithms are implemented in statnet 
under R (Handcock et  al., 2008), or standalone 
software such as MPNet (Wang et al., 2014) and 
EstimNetDirected (Stivala et al., 2020). The mod-
els presented in this chapter are based on output 
from MPNet which implements algorithms pro-
posed by Snijders (2002).

For model selection, we use the strategy 
described in Wang et  al., (2016b), where model 
GOF results serve as guide aiming for the most 
parsimonious model while providing adequate fit 
to as many graph statistics as implemented under 
MPNet.

APPLICATION

This approach to the shaping of the multilevel 
network across organisational boundaries at the 
interindividual and interorganisational levels can 
be illustrated using a case study in the sociology 
of science, an empirical example of co-constitu-
tion without conflation. In this case, the sector of 
top French cancer researchers – working in an 
extremely competitive environment – was exam-
ined at both the interindividual and the interor-
ganisational levels in 1999–2000. In this context, 
we identified the systems of superimposed inter-
dependencies, the strategies of the actors who 
manage these interdependencies, and actors’ 
achievements measured at the individual level. No 
deterministic order is pre-supposed between mul-
tilevel position, strategy and achievements – it is 
established here by analysis alone. This approach 
is particularly sensitive to the existence of ine-
qualities between competing actors because these 
inequalities can render a given strategy more or 
less ‘rewarding’ depending on dual positioning as 
a measurement of opportunity structure.

Data Description

The dataset consists of 97 researchers and their 
affiliated 82 laboratories. The ties among research-
ers are defined based on their advice-seeking 
activities, while the ties defined among laborato-
ries are their collaborations.

Among the 82 laboratories, 36 are in Paris 
and the rest are in the provinces. The laboratories 
have between four and 100 staff members, with 
an average of 28.39 and a standard deviation of 
24.05. For social selection models, these two 
attributes are used as covariates for laboratories. 
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For ALAAMs, we model what constitute towards 
BPs. As ALAAMs can only model binary out-
comes, we define BPs as laboratories having more 
than 38 staff or the 75th percentile of the labora-
tory size distribution.

For researchers, 45 out of the 97 researchers 
are in Paris, and 50 of them are directors of their 
laboratories. The researchers’ average age is 48.21 
with standard deviation of 7.76. Researchers are 
also categorised by one of seven research areas 
or specialities. The performance of researchers 
is calculated based on the average impact factors 
associated with their publications. Researcher  
performance is measured based on the impact  
factors of their publications over five-year periods. 
Two performance scores are obtained based on  
the periods 1995–1999 and 2000–2004. We see 
the former as the past performance with mean at  
38.99 and standard deviation of 28.52, and the 
latter as the current performance with a mean of 
39.12 and standard deviation of 28.55. The social 
selection models presented in this chapter used 
the current performance as one of the covari-
ates to predict network structure. The ALAAMs,  
however, used past performance as a covariate  
to predict the current performance. Again, we 
use the 75th percentile of the current perfor-
mance scores, or 51.92 as the cut-off point, where 
researchers with higher performance scores are 
seen as BF.

Figure 32.3 presents visualisations of the net-
works with breakdowns into within-, across- and 
the overall multilevel structure. The laborato-
ries are represented by blue squares, with darker 

ones indicating Paris. The size of the laboratory 
nodes represents laboratory size. The red circles 
represent researchers with darker-coloured nodes 
as directors of their laboratories, and size of the 
researcher nodes represents their current research 
performance scores.

Modelling Results

We present multilevel ERGM, SSM and ALAAM 
results for this dataset to demonstrate findings 
highlighting the cross-level effects.

ERGM: Multilevel structure can 
explain complicated within-level 
structure
We extract two models from Wang et al. (2013b) to 
compare and demonstrate how complicated within-
level structure can be explained by multilevel struc-
tures. Model 1 in Table 32.1 is an ERGM for the 
researcher advice network only without consider-
ing the multilevel structure, while Model 2 in  
Table 32.2 presents the multilevel ERGM. The two 
models have consistent parameter estimates on the 
negative network density (Arc), the positive ten-
dency for advice ties to be reciprocated (Reciprocity) 
and the positive tendency for network closure  
(AT-T). However, in order to obtain a model pro-
viding adequate fit to all within-graph statistics, 
and degree distributions in particular, Model 1 has 
eight parameters for star-like configurations repre-
senting network tie centralisation, while Model 2 

Figure 32.7 Multilevel network among researchers and their affiliated laboratories. Squares 
represent laboratories, circles represent researchers. For researchers, node size represents 
performance, darker colour represents directors. For laboratories, node size represents labo-
ratory size, darker colour represents laboratories in Paris
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contains none of the tie-centralisation effects, 
which suggests the complicated degree distribution 
can be explained by the network structures beyond 
the within-level advice ties.

Although Model 1 provides adequate fits, 
the model is almost uninterpretable. Model 2, 
in contrast, provides rich interpretations on the 
cross-level network structures. The negative 
(AXS1Aout) effect suggests laboratories with 
higher numbers of researchers are less likely 
to seek collaborations with other laboratories, 
although this effect diminishes once we bring 
in nodal attributes as discussed below in SSM. 
The affiliation-based closure effect (TXBX) sug-
gest advice-seeking and common affiliations are 
promoting one another. Note that as ERGMs and 
ALAAMs are models for cross-sectional data, 
the interpretation is not about casual relation-
ships, but more about association, although the 
results of the underling dynamic social selection 
or influence processes are captured by the graph 
configurations. In this case, we can interpret the 
positive TXBX effect as researchers are more 
likely to seek advice within their laboratories, 
and advice exchange also encourages common 
affiliations.

The negative L3BXApath cross-level degree 
assortativity effect suggests the in-degrees of 
researchers in the advice network is negatively 
correlated with their affiliated lab’s collaboration 
activity in reaching out to other labs. This may 
suggest the popular researcher advisors are affili-
ated with key research labs which do not have the 
urgency in seeking further collaborations. This 
effect is also diminished once we include nodal 
attributes in the SSM.

The cross-level entrainment and exchange 
effects show interesting dynamics on how 
‘weak’ or non-reciprocal ties may make ‘strong’ 
or reciprocal ties at the other level redundant. 
Both non-reciprocal cross-level entrainment and 
exchange effects are positive indicators of how 
the within-level ties are enhancing one another 
where researchers are more likely to provide or 
seek advice from others in collaborating laborato-
ries. As ERGMs treat ties as outcomes, the model 
reflects that advice flow indeed encourages for-
mal collaboration between affiliated laboratories, 
while formal collaborations may have provided 
context and resources for the exchange of research 
advice. However, the cross-level effects become 
negative as soon as a reciprocal tie is involved. 
From the laboratories’ perspective, mutual collab-
oration ties may have shared sufficient informa-
tion or resources that the urge for advice exchange 
between affiliated researchers is not as immediate. 
From the researchers’ perspective, the reciprocal 
advice exchange can indicate there is a certain 
level of interest or lack of knowledge from one 
another, although the fact that these interests have 
not yet been translated into formal collaborations 
suggests collaboration opportunities.

The comparison between Model (1) and (2) 
shows us how rather complicated within-level net-
work structure can be entirely explained by cross-
level effects. The cross-level effects also reveal the 
dependencies between advice exchange and for-
mal collaborations.

SSM: Within-level network structures 
can be affected by attributes of nodes 
at a different level
In SSMs, we bring in nodal attributes as predictors 
for tie formation. Model (3) in Table 32.2 is 
extracted from Wang et al. (2016b) as a final SSM 
for the dataset. The attribute effects in Model (3) 
suggest that within the advice network, researchers 
based in Paris are less likely to seek advice (nega-
tive Sender effect), but if they do, they tend to seek 
advice from other researchers in Paris (positive 
Interaction effect). Researchers tend to seek advice 
from others of similar age (negative Age Difference 
effect). Researchers with higher performance are 
seen as resources of advice (positive Receiver 
effect), while the negative Performance Difference 
effect suggests researchers tend to seek advice 
from others with similar performance. Advice 
seeking is also more likely to take place within 
specialities but not exchanged reciprocally (posi-
tive Speciality Match effect but negative Speciality 
Match Reciprocity effects) suggesting a knowl-
edge hierarchy within speciality. The Director 
attribute does not directly affect advice seeking as 

Table 32.1 Within-level ERGM for 
researcher advice network adapted from 
Wang et al. (2013b)

Model (1)

Effects para s.e.

Arc −3.213 1.024 *

Reciprocity 3.534 0.213 *

2-out-star 0.358 0.146 *

3-out-star −0.018 0.009

2-path −0.135 0.010 *

AinS(4.00) 0.596 0.159 *

AoutS(4.00) −0.722 0.599

AinS(2.00) −1.164 0.450 *

AoutS(2.00) 0.384 0.787

AinAoutS(2.00) −0.233 0.369

AT-T(2.00) 0.932 0.067 *
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there is no Sender/Receiver or Interaction within-
level effect; however, there is a positive Director 
C4AXB Entrainment effect suggesting laboratory 
directors’ advice-seeking activities are strongly 
aligned with the formal collaborations between 

their affiliated laboratories. Without looking into 
the multilevel models, one may conclude that lab-
oratory directors do not shape the advice network 
structure, but the multilevel SSM highlights their 
advice-seeking activities as having strong impact 

Table 32.2 Multilevel ERGM and social selection model adapted from Wang et al. (2013b; 
2016b)

Model (2) ERGM Model (3) SSM

Effects para s.e. Para s.e.

Laboratory collaboration network {A}

Arc −3.831 0.556 * −3.815 0.574 *

Reciprocity 1.679 0.381 * 1.525 0.413 *

2-path −0.079 0.029 * −0.090 0.029 *

Isolates 2.017 0.760 * 2.057 0.769 *

AinS (4.00) 0.640 0.268 * 0.737 0.267 *

AoutS (4.00) 0.320 0.086 * 0.334 0.089 *

AinS (2.00) −0.889 0.614 −1.039 0.618

AT-T (2.00) 0.446 0.127 * 0.420 0.13 *

Researcher advice network {B}

Arc −4.084 0.118 * −3.975 0.143 *

Reciprocity 3.313 0.212 * 3.361 0.235 *

AT-T (2.00) 1.085 0.072 * 1.046 0.074 *

AT-C (2.00) −0.384 0.068 * −0.360 0.073 *

A2P-U (2.00) −0.071 0.020 * −0.083 0.021 *

Paris Sender −0.386 0.101 *

Paris Interaction 0.569 0.094 *

Age Difference −0.023 0.006 *

Performance Receiver 0.005 0.002 *

Performance Difference −0.007 0.002 *

Speciality Match 0.786 0.132 *

Speciality Match Reciprocity −0.795 0.321 *

Collaboration and affiliation {A, X}

AXS1Ain (2.00) 0.240 0.131

AXS1Aout (2.00) −0.324 0.129 *

Advice and affiliation {B, X}

TXBX 1.958 0.275 * 1.945 0.265 *

Cross level interactions {A, B, X}

L3AXBin −0.006 0.018 0.004 0.017

L3AXBout −0.012 0.008 −0.016 0.01

L3AXBpath −0.003 0.010 −0.043 0.016 *

L3BXApath −0.051 0.015 * −0.013 0.01

C4AXB entrainment 0.634 0.104 * 0.524 0.114 *

C4AXB exchange 0.639 0.109 * 0.659 0.108 *

C4AXB exchange reciprocal A −0.293 0.065 * −0.256 0.096 *

C4AXB exchange reciprocal B −0.295 0.136 * −0.328 0.148 *

Director C4AXB Entrainment 0.840 0.180 *
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on the collaboration network at the interlaboratory 
level. This highlights how “unimportant” nodal 
attributes at one level may play a significant role in 
shaping the network at a different level.

The SSM also shows that attributes of laborato-
ries are not as important in the multilevel structure 
compared to researchers’ attributes, as none of 
the laboratory attribute effects are included in the 
model, while their corresponding graph statistics 
are adequately fitted. Although the endogenous 
structural effect part of the SSM Model (3) is 
remarkably similar to the ERGM Model (2) both 
in terms of effect signs and significance, it is worth 
looking into how the attribute effects may explain 
the few changes between the two models. First, the 
negative ERGM AXS1Aout is no longer signifi-
cant and removed from the SSM. AXS1Aout con-
figuration does not involve advice ties, therefore 
the negative association of affiliation and outgo-
ing collaboration is more likely to be explained by 
Director cross-level entrainment effect (while the 
within-advice attribute effects have less impact, 
as they do not count towards graph statistics 
involving collaboration ties). It is the directors’ 
advice-seeking activities that drive the negative 
AXS1Aout effect. Second, we notice the negative 
L3BXApath becomes non-significant; instead the 
negative L3AXBpath becomes significant. When 
the advice network structure is better explained 
by the researcher attributes, the cross-level degree 
assortativity dynamics also change. Instead of 
popular researchers being less likely to be affili-
ated with laboratories actively collaborating with 
other laboratories (negative L3BXApath), it is 

the other way around, such that it is the popular 
laboratories in the collaboration network that are 
less likely to be affiliated with researchers who are 
actively seeking advice.

ALAAM: individual outcomes can be 
affected by network structures at a 
different level
We use the proposed ALAAM to model the asso-
ciation among network positions, researcher per-
formance and laboratory sizes, while taking into 
account various nodal attributes.

As ALAAMs can only model binary outcomes, 
we need to choose a cut-off point for continu-
ous outcome variables. The cut-off value usually 
requires justifications depending on the research 
context. As an illustrative example, we use the 
75th percentile of the original continuous outcome 
values as the cut-off point. Based on such criteria, 
researchers are considered as having high perfor-
mance, or being BF, if their current performance 
scores are greater than 51.92. For laboratories, we 
use laboratory size as the outcome variable, and 
consider a laboratory as a BP if it has more than 
38 staff members.

Other nodal attributes are used as predictors for 
these outcomes, like the attribute covariates used 
in the SSMs, for researchers; we include their 
Director statues, whether they are based in Paris, 
Age, research performance scores from the previ-
ous year and their areas of specialities as covari-
ates. For laboratories, we use whether they are in 
Paris as a covariate.

Table 32.3 Within-level and multilevel ALAAM results

Model (4) Model (5) Model (6)

Effects para s.e. para s.e. para s.e.

Laboratory collaboration network {A}

Density −2.312 0.481 * −1.421 0.541 *

Contagion 0.438 0.132 * 0.473 0.154 *

Researcher advice network {B}

Density −4.292 0.912 * −5.034 0.932 *

Contagion 0.295 0.102 *

Ego out-2-star −0.026 0.010 *

Previous performance 0.084 0.022 * 0.102 0.022 *

Advice seeker within Paris −0.241 0.113 *

Affiliation network {X}

Director status −2.034 0.653 *

Cross level interactions {A, B, X}

C4AXB-exchange contagion on  
researcher performance

1.242 0.311 *
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Table 32.3 presents a set of three ALAAMs for 
comparison. Ignoring the meso-level structure, 
Model (4) and (5) only examine how within-level 
network ties may serve as channels for social 
influence. Model (6) considers the overall multi-
level structure, and allows the test of cross-level 
contagion – that is, whether high-performance 
researchers, or BF, and large laboratories, or BPs, 
are more likely to be associated with one another 
through cross-level affiliation.

Model (4) is the ALAAM for BPs, and their 
associated collaboration network positions. The 
rather simple model provides adequate fit to 35 
attribute statistics, including interaction statistics 
with the Paris location attribute. The positive con-
tagion effect suggests laboratories that are in col-
laboration with other BPs are also more likely to 
be BPs themselves. There is no tendency for BPs 
to be based in Paris – only eight out of the 36 BPs 
are in Paris.

Model (5) tests the association between BF and 
their attributes and positions in the advice net-
work only. The model provides adequate fit to 81 
attribute statistics, including attribute interaction 
statistics. The positive ‘Previous performance’ 
effect suggests researchers were more likely to 
be BF if they had higher previous performance. 
The Contagion effect suggests research perfor-
mance is influenced by the performance of advice 
network partners – that is, researchers who seek 
advice from BF are also likely to be BF. The nega-
tive Ego out-2-star indicates active advice seekers 
are less likely to be BF. There is no evidence that 
BF are perceived as sources of advice either, as 
the model fitted the Receiver and Ego in-2-star 
statistics. The model also provided good fit to all 
other researcher attributes, hence none of the loca-
tion, age, directorship and specialities affected 
researchers’ performance given the effects we see 
in the model.

Model (6) predicts both laboratory sizes and 
researcher performance while treating the multi-
level network structure as part of the predictors. 
It provides adequate fit to 232 statistics, including 
attribute interaction statistics with higher-order 
graph configurations, such as within- and cross-
level triangles and four-cycles.

The within-level effects under Model (6) are 
largely consistent with Model (4) for the BPs, and 
our interpretation of the BP contagion effect stays. 
For BF, however, the previous significant within 
advice level Contagion and Ego out-2-star effects 
are no longer required, and they are explained now 
by the cross-level effects. Researchers’ previous 
performance remains a strong predictor for the cur-
rent performance. Once we include the multilevel 
effect, the researchers’ location attribute becomes 
a significant predictor for research performance. 

The negative effect suggests researchers who are 
based in Paris that are actively seeking advice are 
less likely to be BF. In other words, advice seekers 
in Paris may be more likely to be small fish.

The positive cross-level exchange-contagion 
effect suggests researchers who have been seek-
ing advice from, or providing advice to, other BF 
in collaborating laboratories are more likely to 
be BF. And the directions of the laboratory col-
laboration ties are opposite from the directions 
of researcher advice-seeking ties which form an 
advice–collaboration exchange loop. This model 
provides adequate fit to the cross-level entrain-
ment effects; hence it is only the exchange effect 
affecting the researchers’ performance. From a 
researcher’s perspective, on the one hand, seeking 
advice from BF whose laboratory is collaborating 
with the researcher’s own laboratory may enhance 
research performance. From the laboratory’s per-
spective, on the other hand, seeking collabora-
tion from laboratories whose BF researchers are 
actively seeking advice from its own researchers 
may enhance research performance.

Comparing Model (6) with Model (5), the posi-
tive within-level contagion effect as in Model (5) 
is no longer significant in affecting research per-
formance, instead the collaborations among labo-
ratories provide context, social settings, resources, 
and opportunities to enhance researcher perfor-
mance. In other words, advice seeking ties them-
selves are not channels of influence unless the 
affiliated laboratories have formal collaborations 
in place. Researchers who only seek advice with 
any BF might not necessarily improve their own 
performance, unless the BF are indeed from a col-
laborating laboratory. The success of researchers 
is associated with both their own and their affili-
ated laboratories’ networks.

It is also worth noting that the director status 
had no effects within levels in either Model (4) or 
(5) but becomes significant in affecting laboratory 
sizes through the cross-level affiliation network. 
This suggests laboratories are more likely to be 
BP if their affiliated representatives during the 
data collection were not the laboratory’s directors. 
This may be because not all researchers, hence 
directors of all laboratories, were interviewed, and 
larger laboratories had other representatives than 
the directors providing survey responses.

Given Model (6) has fitted all statistics related 
to interactions of the outcome and other attribute 
covariates, therefore neither Age nor specialities 
of researchers would have affected researcher per-
formance or laboratory sizes. There is also no evi-
dence for association between high-performance 
researchers and large laboratories. In other words, 
BF do not necessarily work in BPs, given other 
significant effects presented in the model.
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Such multilevel network analyses as a methodol-
ogy can be extended to three or more superposed lev-
els. A case of superposed team level, interindividual 
level in a profession and interorganisational level 
among institutions of this profession complexifies 
collective agency but provides models of cumulative 
advantage mechanisms, what Lazega and Jourda 
(2016) call the ‘structural wings’ of Mertonian, 
meso-level Matthew effects, with their rich-get-
richer-through-borrowing effects. Statistical models 
for such data formats, including cross-level effects 
to study these mechanisms and their variety, remain 
to be designed, implemented and used.

MNA RESEARCH POTENTIAL: COMBINING 
RELATIONAL CAPITAL OF INDIVIDUALS 
AND SOCIAL CAPITAL OF COLLECTIVES

Two examples of MNA research provide illustra-
tion of how these models (especially MERGMs) 
are used. The first is in the field of economic 
sociology; the second is in life-course studies.

Analysing the formation of multilevel networks 
where the unit of analysis is the pair individual–
organisation makes it possible to differentiate 
between superposed levels of agency where links 
between individuals can influence links between 
organisations, as when exchanges of information 
between two competing individuals in a market 
(for example, two sellers discussing a common 
buyer’s demand and purchasing power) can lead to 
contracts signed between the companies employ-
ing these three individuals (Brailly et  al., 2015; 
Favre et al., 2016). MERGMs thus tease out some 
of the relational mechanisms making coopera-
tion between competitors possible (Lazega, 2011; 
Brailly & Lazega, 2012). More generally, taking the 
meso level of society seriously requires introducing 
dynamics into the study of different and superposed 
systems of interdependencies and collective agency.

The first study looks at network formation at 
each level of specific markets – that is, trade fairs 
for television programmes in Eastern Europe and 
Africa. In this trade fair sellers and buyers of TV 
programmes (distributors and TV channels) meet 
once a year to discuss contracts, make deals, keep 
informed about new films, series and game shows, 
and observe market evolution. The study of the 
informal exchange of information between sales 
representatives and formal deal ties between their 
companies examines network formation at each 
level. It shows that these networks are heavily 
interdependent but that each level has its own spe-
cific processes. Tie formation between two organi-
sations takes place in a different context than that 

between two individuals, and it evolves in a dif-
ferent temporality. For each level, specific struc-
tural processes emerge and explain the network 
morphology. This, however, complexifies the co-
evolution of networks and behaviour at both levels 
separately and jointly. Levels are interdependent 
and influence each other. Supposing that these lev-
els are nested does not imply that they evolve sym-
metrically and in sync. As emphasised by Lazega 
(2015, 2016), the co-evolution of the two levels 
is complex, dynamic and can be partially discon-
nected if not asynchronous – thus raising the issue 
of the costs of synchronisation. Structural organi-
sation of each level as well as the attributes and 
context explaining tie formation at each level can 
be different. Brailly (2016) identifies at the inter-
organisational level a temporality that requires 
companies to meet regularly at the ‘same time 
next year’ in a system that is driven by a core, an 
‘oligopoly with fringes’. At the interindividual 
level, sales representatives need to meet ‘next 
time this year’ in order to extract more value from 
their socioeconomic relations in a fragmented and 
competitive milieu. The long-term deal network 
between companies influences short-term cooper-
ation ties between individuals, which in return can 
bring new business opportunities and constraints 
to their companies.

The potential of this kind of modelling can also 
be highlighted by combining MNA and life-course 
research in sociology. The principle of linked lives 
is one of the key tenets of the life-course perspec-
tive (Elder et al., 2003; Vacchiano & Spini, 2021), 
and researchers have long been interested in the 
influence of these connections on the course of 
individual lives. What multilevel networks reveal 
about the life course can be exemplified with 
research on multilevel networks and status attain-
ment (Vacchiano et  al., 2022). MNA thus prom-
ises to shed light on how individuals acquire status 
over time, a question of major interest in life-
course research studying cumulative (dis)advan-
tage and social mobility (if any).

Research on social networks and status attain-
ment was already well advanced in the 1990s 
(Breiger, 1990; Lin, 1999). Networks provide 
resources, such as information and social support, 
that facilitate individual action. Accessing and 
mobilising better resources, conceptualised as rela-
tional capital, increases the chances of obtaining, 
for example, higher paid and more highly skilled 
jobs. Networks also often mirror ascribed charac-
teristics of individuals (class, gender, ethnicity or 
human capital), for example through homophily, 
which exacerbates social inequalities (McPherson 
et al., 2001). The use of weak ties also increases 
the chances of networks improving social status 
(Granovetter, 1973, 1985; Burt, 1992, 2007) by 
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providing individuals with more access to struc-
tural opportunities together with fewer constraints. 
Beyond ascribed and acquired personal character-
istics and resources, social resources have also 
been shown to have an impact on status attainment 
and social inequalities, namely resources such as 
information, influence, support, advice or knowl-
edge, to which individuals potentially have access 
through their contacts. In particular, individuals 
have access to social resources through mecha-
nisms, such as homophily and transitivity, that link 
people in similar social positions. These mecha-
nisms make networks a further source of exposure 
to structural opportunities and constraints (Lin, 
1999, 2001).

As seen above in the example of the cancer 
researchers, individuals embedded in interin-
dividual and interorganisational networks can 
access, through the latter, resources complemen-
tary to their personal resources and their social 
ties (Breiger, 1974; Lazega et  al., 2008; Lazega, 
2020; Moliterno & Mahony, 2011). Evidence 
has emerged from MNA of an additional type of  
resource that exerts a structural influence on status 
attainment: resources that derive, under specific 
conditions, from the organisations to which actors 
belong and the organisational networks in which 
they are immersed. Studies by Lazega, Jourda and 
Mounier (Lazega et  al., 2013; Lazega & Jourda, 
2016) on cumulative (dis)advantages during aca-
demic careers (see Merton, 1968, on this subject) 
of the researchers whose multilevel networks 
were examined above show that it is not only 
personal and social resources that are important 
for academic success: the centrality and prestige 
of research laboratories also plays a role. On the 
one hand, laboratories offer researchers their 
institutional status, positioning them in the sci-
entific world beyond their individual status (what 
is called dual positioning). This gives researchers 
complementary access to relational/social capi-
tal (through indirect contacts called dual alters), 
which does not depend on their social ties, but 
on the organisational network of their labora-
tories – often the networks of their hierarchi-
cal or administrative superiors. Dual positioning 
(whether actors are BFBP, BFSP, LFBP or LFSP) 
has been shown to matter by providing research-
ers with a multilevel status, which positions them 
in the scientific community beyond their personal 
prestige. This gives them access to complemen-
tary resources: infrastructure, reputation and, not 
least, combined relational/social capital. Indeed, 
belonging to a BP provides researchers with a 
wider institutional network, giving them access 
to resourceful contacts (dual alters), albeit in an 
indirect way. Access to these indirect contacts is 
thus a function of affiliation with laboratories of 

different capacity and power. For example recall 
that it is researchers with low status in science 
(LF) who are affiliated with larger labs (BPs) who 
benefit from the complementary resources of dual  
alters. Five years after data collection, it is shown 
that these LFBP are more successful than the 
LFSP.

Actors navigate their trajectories not only as 
individuals with their relational capital, but also as 
members of organisations with their social capital 
(collective mechanisms) (Lazega, 2020). Based 
on strong dual positioning, collectively closing 
multilevel 3-paths provides access to dual alters 
with complementary resources, which helps some 
actors (and not others) with an extended oppor-
tunity structure (Lazega et  al., 2013; Lazega & 
Jourda, 2016) and represent (dis)advantage in com-
petitive social spaces. Lin’s social resource theory 
is developed here with the concept of extended 
opportunity structure that drives the development 
of models of status attainment accounting for the 
structural influence of multilevel networks. In this 
framework, vertical linchpins can give access to 
dual alters with complementary resources, acti-
vating network lift. When subordinates are able 
to borrow the relational capital of their superiors, 
they can expand their network and reach dual 
alters who, provided they give access to comple-
mentary resources, can create this network lift in 
terms of performance. Alternatively, when people 
are weakly active at the next, higher level and oth-
ers dominate at several levels simultaneously, the 
latter can exercise power and impose constraint 
that can end up being taken for granted in the sys-
tem. In a highly bureaucratised society, it is not 
rare to see managers exposing subordinates to 
increasingly open competition, or competing with 
their subordinates, undermining the latters’ activi-
ties, networks and projects especially by closing 
access to dual alters and the extended opportunity 
structure. 

Much remains to be done in understanding  
the conditions under which this meso-level, 
extended opportunity structure identified with 
MERGMs develops social resource theory and 
provides new avenues of research for combina-
tions of social network analyses and, for example, 
life-course analyses and understanding of social 
inequalities.

The challenge here is to understand how social 
systems at superposed levels co-evolve and how 
actors at both levels coordinate to generate the 
socioeconomic structure, with its social processes 
and (dis)advantages. Other fields of substantive 
research can benefit from MNA (Glueckler and 
Doreian, 2016). In political science and sociol-
ogy, there is something remarkable in the way 
multilevel relational infrastructures are used in 
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institutional entrepreneurship and institution 
building processes (Lazega et  al., 2016; Lazega, 
2018) when they mobilise collegial oligarchies 
of vertical linchpins simultaneously central and 
active at different levels of agency. These core 
cross-level key players concentrate power and 
punch above their weight in such processes, for 
example by formulating norms at a higher level 
and enforcing them at a lower level, thus driving 
and smoothing adoption processes of regulatory 
changes. The multilevel character of regulation 
thus strengthens macro determinants of intrinsi-
cally micro- and meso-level processes.

Multilevel models are also used for the study 
of so-called social-ecological networks (networks 
comprised of both people-to-people ties and peo-
ple-to-nature ties) – for example, in supporting 
resilience to environmental and climate change. 
Social networks underpin the resilience of human 
communities to environmental change due to 
their role in building adaptive capacity (Barnes 
et al., 2020; Barnes, 2022). Both adaptation and 
transformation require that social actors and insti-
tutions have some level of joint adaptive capac-
ity in order to absorb and shape change. Recent 
research has begun to disentangle how social 
networks more specifically relate to adaptation 
and transformation (Barnes et  al., 2020). This 
work rests on the idea that social-ecological sys-
tems can be understood and explicitly modelled 
as multilevel, social-ecological networks (Bodin 
et al., 2019). This conceptualisation allows us to 
consider important relationships in social sys-
tems – such as cooperation and communication 
between key individuals, communities, organisa-
tions, or even nations; key linkages in ecologi-
cal systems – such as trophic food webs, larvae 
or seed dispersal, or landscape connectivity; and 
the interactions between these – such as resource 
extraction, ecosystem service flows, or policy 
and management actions, including how power 
manifests in such social-ecological networks and 
its role in driving adaptation and/or transforma-
tion. Multilevel network modelling of this kind is 
seen as a critical research frontier in this area that 
can inform the building of more resilient societies 
and ecosystems to meet the rising tide of dramatic 
environmental change.

Many policy domains would thus benefit from 
further applying such an MNA framework. In par-
ticular, when each level evolves based on its own 
dynamics, issues of synchronisation and costs of 
synchronisation between the temporalities of the 
levels raise new questions. Some ties at one level 
remain stable thanks to the fact that other ties at 
a different level change and create stability from 
movement at the level of the whole structure 
(Lazega, 2017). Such dynamic invariants raise, for 

example, the question of who in society incurs the 
costs of such synchronisations. Individuals most 
often incur such costs of synchronisation between 
levels for the benefit of organisations, an under-
estimated source of social inequalities for such 
individuals (Lazega, 2016). To take into account 
the vertical complexity of a social world in the 
cohabitation and co-constitution of several levels, 
it is necessary to further link these levels and their 
dynamics analytically. An important methodologi-
cal challenge is to express dynamically the com-
bined and interrelated agency of actors in several 
actor sets in a multilevel network (Snijders, 2016; 
Koskinen & Snijders, 2022).

CONCLUSION

Bottom-up and top-down struggles in politics sug-
gest that when a social fact must be observed at 
analytically different levels of collective action, 
the analysis of individual agency, relations and 
skills becomes inseparable from that of organisa-
tional agency, structure and culture. To take into 
account this vertical complexity of a social world 
in the coordination and co-constitution of several 
levels, it is necessary to further explore the links 
between these levels and their dynamics analyti-
cally. Analysing superposed levels of collective 
agency, their synchronisations and unequal costs 
of such synchronisations (in terms of time and 
energy spent in complex, collective careers for 
example) incurred by different levels will lead to 
new knowledge on social inequalities that are still 
overlooked in the social sciences. MNA as a 
method thus helps build a view of how society 
works that will be useful in the short and long 
future. With climate change, for example, nation-
wide policies of management of vital resources 
will need to synchronise with changes in lifestyles 
created locally by communities also managing 
common pool resource institutions (Ostrom, 
1990). MNA concepts and methods provide a 
view of how such interdependent levels of collec-
tive agency can co-evolve and coordinate (or not), 
raising issues of social justice attached to such 
coordination. These are cutting edge issues that 
deserve more network analytical research at vari-
ous levels of society.

More generally, such multilevel actors, forms 
of agency and processes specify and substantiate 
dimensions of Breiger’s (1974) duality of per-
sons and groups – that is, their co-constitution. 
Developing MNA dynamics is part of explaining 
how we all make Breiger’s duality happen and 
how this co-constitution of levels is consequential.  
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Some of these dynamics evolve beautifully syn-
chronously, others asynchronously. This also 
extends and relates duality to issues of social 
justice and inequalities: multilevel networks to 
somewhere, or to nowhere, are part of duality too.

Social network analysis not only has the con-
ceptual and methodological tools to map these 
processes, but by its very nature it incorporates 
in its analyses power asymmetries and structural 
inequalities in the navigation of social processes 
in multilevel, nested social contexts. At stake in 
particular are multilevel solutions to existential 
problems linked to the transitions that societies 
face (climate related, ecological, demographic, 
etc.). How to observe, model and analyse phenom-
ena that are not only characterised by networks of 
interdependencies between conflicting actors, at 
one level, but that are also simultaneously dynamic 
and multilevel raises key issues for the social sci-
ences in endangered societies. Hopefully MNA 
can help track such phenomena to help manage the 
dilemmas of collective action that they generate.
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